

OpenL Tablets BRMS
Reference Guide

Release 5.24

Document number: TP_OpenL_RG_2.4_LSh

Revised: 09-08-2021

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 5

1.1 Audience .. 5
1.2 Related Information .. 5
1.3 Typographic Conventions .. 5

2 Introducing OpenL Tablets .. 7

2.1 What Is OpenL Tablets? ... 7
2.2 Basic Concepts ... 7

Rules .. 8
Tables .. 8
Projects ... 8

2.3 System Overview ... 8
2.4 Installing OpenL Tablets .. 9
2.5 Tutorials and Examples .. 9

Tutorials .. 9
Examples ... 11

3 Creating Tables for OpenL Tablets ... 12

3.1 Table Recognition Algorithm ... 12
3.2 Table Types .. 13

Decision Table ... 13
Datatype Table .. 46
Data Table ... 50
Test Table .. 57
Run Table .. 61
Method Table .. 61
Configuration Table ... 62
Properties Table .. 64
Spreadsheet Table ... 65
TBasic Table ... 77
Column Match Table ... 77
Constants Table ... 81
Table Part .. 81

3.3 Table Properties .. 84
Category and Module Level Properties ... 84
Default Value ... 85
System Properties ... 85
Properties for a Particular Table Type .. 85
Rule Versioning ... 86
Info Properties .. 99
Dev Properties ... 99
Properties Defined in the File Name ... 106
Properties Defined in the Folder Name .. 109
Keywords Usage in a File Name .. 109

4 OpenL Tablets Functions and Supported Data Types .. 112

4.1 Working with Arrays .. 112

Working with Arrays from Rules ... 112
Array Index Operators ... 113
Operators and Functions to Work with Arrays ... 116
Rules Applied to Array... 117
Rules with Variable Length Arguments ... 118

4.2 Working with Data Types .. 118
Simple Data Types ... 118
Range Data Types .. 120

4.3 Working with Functions... 122
Understanding OpenL Tablets Function Syntax .. 122
Math Functions ... 122
Date Functions .. 126
Special Functions and Operators .. 128
Null Elements Usage in Calculations ... 131

5 Working with Projects .. 133

5.1 Project Structure ... 133
Multi Module Project .. 133
Creating a Project .. 134
Project Sources ... 134

5.2 Rules Runtime Context Management from Rules ... 134
5.3 Project and Module Dependencies ... 136

Dependencies Description .. 137
Dependencies Configuration ... 139
Import Configuration .. 139
Components Behavior ... 140

Appendix A: BEX Language Overview .. 142

Introduction to BEX .. 142
Keywords .. 142
Simplifying Expressions .. 143

Notation of Explanatory Variables .. 143
Uniqueness of Scope ... 143

Operators Used in OpenL Tablets ... 143

Appendix B: Functions Used in OpenL Tablets ... 147

Math Functions ... 147
Array Functions ... 149
Date Functions .. 150
String Functions .. 152
Special Functions .. 154

Index ... 155

OpenL Tablets Reference Guide Preface

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 5 of 156

1 Preface
This preface is an introduction to the OpenL Tablets Reference Guide. The following topics are included in this
preface:

¶ Audience

¶ Related Information

¶ Typographic Conventions

1.1 Audience
This guide is mainly intended for analysts and developers who create applications employing the table based
decision making mechanisms offered by OpenL Tablets technology. However, other users can also benefit from
this guide by learning the basic OpenL Tablets concepts described herein.

Basic knowledge of Excel® is required to use this guide effectively. Basic knowledge of Java is required to follow
the development related sections.

1.2 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Document describing OpenL Tablets WebStudio, a web application for
managing OpenL Tablets projects through a web browser.

http://o penl-tablets.org/ OpenL Tablets open source project website.

1.3 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold ¶ Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons, perspectives,
tabs, tooltip labels, tree elements, views, and windows.

¶ Represents keys, such as F9 or CTRL+A.

¶ Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic ¶ Represents any information to be entered in a field.

¶ Represents documentation titles.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Reference Guide Preface

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 6 of 156

Typographic styles and conventions

Convention Description

< > Represents placeholder values to be substituted with user specific values.

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 7 of 156

2 Introducing OpenL Tablets
This chapter introduces OpenL Tablets and describes its main concepts.

The following topics are included in this section:

¶ What Is OpenL Tablets?

¶ Basic Concepts

¶ System Overview

¶ Installing OpenL Tablets

¶ Tutorials and Examples

2.1 What Is OpenL Tablets?
OpenL Tablets is a Business Rules Management System (BRMS) and Business Rules Engine (BRE) based on tables
presented in Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents
containing business logic specifications as executable source code. Since the format of tables used by OpenL
Tablets is familiar to business users, OpenL Tablets bridges a gap between business users and developers, thus
reducing costly enterprise software development errors and dramatically shortening the software development
cycle.

In a very simplified overview, OpenL Tablets can be considered as a table processor that extracts tables from
Excel documents and makes them accessible from software applications.

The major advantages of using OpenL Tablets are as follows:

¶ OpenL Tablets removes the gap between software implementation and business documents, rules, and
policies.

¶ Business rules become transparent to developers.

¶ OpenL Tablets verifies syntax and type errors in all project document data, providing convenient and
detailed error reporting.

¶ OpenL Tablets can directly point to a problem in an Excel document.

¶ OpenL Tablets provides calculation explanation capabilities, enabling expansion of any calculation result by
pointing to source arguments in the original documents.

¶ OpenL Tablets provides cross-indexing and search capabilities within all project documents.

¶ OpenL Tablets provides the ability to create compact and easily readable business rules that become a part
of business documentation.

¶ Knowledge of Java or any other programming language is not required to create business rules with OpenL
Tablets.

OpenL Tablets supports the .xls , . xlsx, and .xl sm file formats.

2.2 Basic Concepts
This section describes the following main OpenL Tablets concepts:

¶ Rules

¶ Tables

¶ Projects

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 8 of 156

Rules

In OpenL Tablets, a rule is a logical statement consisting of conditions and actions. If a rule is called and all its
conditions are true, then the corresponding actions are executed. Basically, a rule is an IF-THEN statement. The
following is an example of a rule expressed in human language:

If a service request costs less than 1,000 dollars and takes less than 8 hours to execute, then the service request
must be approved automatically.

Instead of executing actions, rules can also return data values to the calling program.

Tables

Basic information OpenL Tablets deals with, such as rules and data, is presented in tables. Tables within one
project must be unique and it is denoted by table name and input parameters. Nevertheless, different versions
of the same table can have the same name and input parameters.

Tables are referenced by calling their names.

Different types of tables serve different purposes. For more information on table types, see Table Types.

Projects

An OpenL Tablets project is a container of all resources required for processing rule related information.
Usually, a project contains Excel files, which are called modules of the project, and optionally Java code, library
dependencies, and other components. For more information on projects, see Working with Projects.

There can be situations where OpenL Tablets projects are used in the development environment but not in
production, depending on the technical aspects of a solution.

2.3 System Overview
The following diagram displays how OpenL Tablets is used by different types of users.

OpenL Tablets
project

P
P

PP
P

PP
P

P

Excel tables

Client
application

IDE

OpenL
WebStudio

Administrator

DeveloperSolution
developer

Business
user

Define and maintain,
test and fix rules

Manage projects,
measure performance

Work on OpenL Tablets
project with Maven

Execute rules through
wrappers

Execute rules through
web services

Figure 1: OpenL Tablets overview

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 9 of 156

A typical lifecycle of an OpenL Tablets project is as follows:

1. A business analyst creates an OpenL Tablets project in OpenL Tablets WebStudio.

2. Optionally, development team may provide the analyst with a project in case of complex configuration.

3. The business analyst creates correctly structured tables in Excel files based on requirements and includes
them in the project.

Typically, this task is performed through Excel or OpenL Tablets WebStudio in a web browser.

4. Business analyst performs unit and integration tests by creating test tables and performance tests on rules
through OpenL Tablets WebStudio.

As a result, fully working rules are created and ready to be used.

5. Development team creates other parts of the solution and employs business rules directly through the
OpenL Tablets engine or remotely through web services.

6. Whenever required, a business user updates or adds new rules to project tables.

OpenL Tablets business rules management applications, such as OpenL Tablets WebStudio, Rules Repository,
and OpenL Tablets Rule Services, can be set up to provide self-service environment for business user
changes.

2.4 Installing OpenL Tablets
OpenL Tablets installation instructions are provided in [OpenL Tablets Installation Guide].

The development environment is required only for creating OpenL Tablets projects and launching OpenL Tablets
WebStudio or OpenL Tablets Rule Services. If OpenL Tablets projects are accessed through OpenL Tablets
WebStudio or web services, no specific software needs to be installed.

2.5 Tutorials and Examples
OpenL Tablets provides a number of preconfigured projects developed for new users who want to learn working
with OpenL Tablets quickly.

These projects are organized into following groups:

¶ Tutorials

¶ Examples

Tutorials

OpenL Tablets provides a set of tutorial projects demonstrating basic OpenL Tablets features starting from very
simple and following with more advanced projects. Files in the tutorial projects contain detailed comments
allowing new users to grasp basic concepts quickly.

To create a tutorial project, proceed as follows:

1. To open Repository Editor, in OpenL Tablets WebStudio, in the top line menu, click the Repository item.

2. Click the Create Project button .

3. In the Create Project from window, click the required tutorial name.

4. Click Create to complete.

The project appears in the Projects list of Repository Editor.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20Installation%20Guide.pdf

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 10 of 156

Figure 2: Creating tutorial projects

5. In the top line menu, click Rules Editor.

The project is displayed in the Projects list and available for usage. It is highly recommended to start from
reading Excel files for examples and tutorials which provide clear explanations for every step involved.

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 11 of 156

Figure 3: Tutorial project in the OpenL Tablets WebStudio

Examples

In addition to tutorials, OpenL Tablets provides several example projects that demonstrate how OpenL Tablets
can be used in various business domains.

To create an example project, follow the steps described in Tutorials, and in the Create Project from dialog,
select an example to explore. When completed, the example appears in the OpenL Tablets WebStudio Rules
Editor as displayed in the Figure 3.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 12 of 156

3 Creating Tables for OpenL Tablets
This chapter describes how OpenL Tablets processes tables and provides reference information for each table
type used in OpenL Tablets.

The following topics are included in this chapter:

¶ Table Recognition Algorithm

¶ Table Types

¶ Table Properties

3.1 Table Recognition Algorithm
This section describes an algorithm of how the OpenL Tablets engine looks for supported tables in Excel files. It is
important to build tables according to the requirements of this algorithm; otherwise, the tables are not
recognized correctly.

OpenL Tablets utilizes Excel concepts of workbooks and worksheets, which can be represented and maintained
in multiple Excel files. OpenL Tablets does not use any of Excel's formula capabilities though. Any calculations
performed in OpenL Tablets are done using OpenL syntax, which is completely distinct from any formula syntax
used by Excel. Excel worksheets can be named and arranged within one workbook in the order convenient to a
user. Each worksheet, in its turn, is comprised of one or more tables. Workbooks can include tables of different
types, each one supporting different underlying logic.

The general table recognition algorithm is as follows:

1. The engine looks into each spreadsheet and tries to identify logical tables.

Logical tables must be separated by at least one empty row or column or start at the very first row or
column. Table parsing is performed from left to right and from top to bottom. The first populated cell that
does not belong to a previously parsed table becomes the top-left corner of a new logical table.

2. The engine reads text in the top left cell of a recognized logical table to determine its type.

If the top left cell of a table starts with a predefined keyword, such table is recognized as an OpenL Tablets
table.

The following are the supported keywords:

Table type keywords

Keyword Table type

Constants Constants Table

ColumnMatch Column Match Table

Data Data Table

Datatype Datatype Table

Environment Configuration Table

Method Method Table

Properties Properties Table

Rules Decision Table

Run Run Table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 13 of 156

Table type keywords

Keyword Table type

SimpleLookup Simple Lookup Table

SimpleRules Simple Rules Table

SmartLookup Smart Lookup Table

SmartRules Smart Rules Table

Spreadsheet Spreadsheet Table

TablePart Table Part

TBasic or Algorithm TBasic Table

Test Test Table

All tables that do not have any of the preceding keywords in the top left cell are ignored. They can be used
as comments in Excel files.

3. The engine determines the width and height of the table using populated cells as clues.

It is a good practice to merge all cells in the first table row, so the first row explicitly specifies the table width.
The first row is called the table header.

Note: To put a table title before the header row, an empty row must be used between the title and the first row of the
actual table.

3.2 Table Types
OpenL Tablets supports the following table types:

¶ Decision Table

¶ Datatype Table

¶ Data Table

¶ Test Table

¶ Run Table

¶ Method Table

¶ Configuration Table

¶ Properties Table

¶ Spreadsheet Table

¶ TBasic Table

¶ Column Match Table

¶ Constants Table

¶ Table Part

Decision Table

A decision table contains a set of rules describing decision situations where the state of a number of conditions
determines execution of a set of actions and returned value. It is a basic table type used in OpenL Tablets
decision making.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 14 of 156

SmartRules Double DriverPremium (Driver driver, Double additionalCharge)

Driver Type
Years

Driving
Experience

Premium

Principal
0 10 $600

10 40 $550

Occasional
0 15 $750

15 40 $700

Excluded, Non-Driver = NonDriverPremiumByAge (driverType, age)

 = $600 + additionalCharge

Figure 4: Decision table example

The following topics are included in this section:

¶ Decision Table Structure

¶ Decision Table Interpretation

¶ Simple and Smart Rules Tables

¶ Simple and Smart Lookup Tables

¶ External Tables Usage in Smart Decision Tables

¶ Ranges and Arrays in Smart and Simple Decision Tables

¶ Rules Tables

¶ Collecting Results in Decision Table

¶ Local Parameters in Decision Table

¶ Transposed Decision Tables

¶ Representing Values of Different Types

¶ Using Calculations in Table Cells

¶ Referencing Attributes

¶ Calling a Table from Another Table

¶ Using Referents from Return Column Cells

¶ Using Rule Names and Rule Numbers in the Return Column

Decision Table Structure

An example of a decision table is as follows:

Figure 5: Decision table

The following table describes the full structure of a decision table with the Rules keyword:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 15 of 156

Decision table structure

Row number Mandatory Description

1 Yes Table header, which has the following pattern:
<keywor d> <r ule hea der>

where <key word> is either 'Rules' or 'DT' and <rul e header> is a signature of a table
with names and types of the rule and its parameters used to access the decision table
and provide input parameters.

2 Yes Row consisting of the following cell types:

Type Description Examples

Condition
column header

Identifies that the column contains a rule
condition and its parameters. It must start with
thŜ ά/έ ŎƘaracter followed by a number, or be
άM/мέ ŦƻǊ ǘƘe 1st column with merged rows. If the
condition has several parameters, the cell must
be merged on all its parameter columns.

C1, C5,

C8

MC1

Horizontal
condition
column header

Identifies that the column contains a horizontal
rule condition and its parameter (horizontal
condition can have only one parameter). It must
stŀǊǘ ǿƛǘƘ ǘƘŜ άI/έ ŎƘŀǊŀŎǘer followed by a
number.

Horizontal conditions are used in lookup tables
only.

HC1, HC5,

HC8

Action column
header

Identifies that the column contains rule actions. It
Ƴǳǎǘ ǎǘŀǊǘ ǿƛǘƘ ǘƘŜ ά!έ ŎƘŀǊŀŎter followed by a
number.

A1, A2,

A5

Return value
column header

Identifies that the column contains values to be
returned to the calling program. A table can have
multiple return columns, however, only the first
fired non-empty value is returned.

RET1

All other cells in this row are ignored and can be used as comments.

If a table contains action columns, the engine executes actions for all rules with true
conditions. If a table has a return column, the engine stops processing rules after the
first executed rule with true conditions and non-empty result found

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 16 of 156

Decision table structure

Row number Mandatory Description

3 Yes Row containing cells with expression statements for condition, action, and return value
column headers. OpenL Tablets supports Java grammar enhanced with OpenL Tablets
Business Expression (BEX) grammar features. For more information on the BEX language,
see Appendix A: BEX Language Overview.

In most cases, OpenL Tablets Business Expression grammar covers all the variety of
expression statements and an OpenL user does not need to learn Java syntax.

The code in these cells can use any objects and functions visible to the OpenL Tablets
engine as elsewhere. For more information on enabling the OpenL Tablets engine to use
custom Java packages, see Configuration Table.

Purpose of each cell in this row depends on the cell above is as follows:

Cell above Purpose

Condition column
header

Specifies the logical expression of the condition. It can reference
parameters in the table header and parameters in cells below.

The cell can contain several expressions, but the last expression
must return a Boolean value. All condition expressions must be
true to execute a rule.

Horizontal
condition

The same as Condition column header.

Action column
header

Specifies expression to be executed if all conditions of the rule
are true. The expression can reference parameters in the rule
header and parameters in the cells below.

Return value
column header

Specifies expression used for calculating the return value. The
type of the last expression must match the return value
specified in the rule header. The explicit return statement with
the keyworŘ άǊŜǘǳǊƴέ is also supported.

This cell can reference parameters in the rule header and
parameters in the cells below.

4 Yes Row containing parameter definition cells. Each cell in this row specifies the type and
name of parameters in the cells below it.

Parameter name must be one word long.

Parameter type must be one of the following:

¶ simple data types

¶ aggregated data types or Java classes visible to the engine

¶ one-dimensional arrays of the above types as described in Representing Arrays

5 Yes Descriptive column tit les. The rule engine does not use them in calculations but they are
intended for business users working with the table. Cells in this row can contain any
arbitrary text and be of any layout that does not correspond to other table parts. The
height of the row is determined by the first cell in the row.

6 and below Yes Concrete parameter values. Any cell can contain formula, a mathematical one or a rule
call, instead of concrete value and calculate the value. This formula can reference
parameters in the rule header and any parameters of condition columns in the return
column.

A user can merge cells of parameter values to substitute multiple single cells when the same value needs to be
defined in these single cells. During rule execution, OpenL Tables unmerges these cells.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 17 of 156

The additional Rule column with merged cells is used as the first column when the return value must be a list of
values written in multiple rows of the same column, that is, a vertically arranged array. The Rule column
determines the height of the result value list.

Figure 6: A table with the Rule column as the first column

Figure 7: Result in the vertically arranged array format

The rule column can be defined for rules tables and smart rules tables.

Decision Table Interpretation

Rules inside decision tables are processed one by one in the order they are placed in the table. A rule is executed
only when all its conditions are true. If at least one condition returns false, all other conditions in the same row
are ignored.

Blank parameter value cell of the condition is interpreted as a true condition and this condition is ignored for a
particular rule row or column. If the condition column has several parameters, the condition with all its
parameter cells blank is interpreted as a true condition.

Note: As OpenL Tablets returns the first true condition, it is a good practice to list all possible non-blank parameters and
their combinations in case of multiple conditioning first, and then list the blank parameters.

Blank parameter value cell of the return/action column is ignored, the system does not calculate the
return/action expression of the current rule and starts processing the next rule. If the return/action column has
several parameters, all parameters cells need to be blank to ignore the rule.

If the empty return value is calculated by the expression, the system starts processing the next rule searching for
a non-empty result.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 18 of 156

The following example contains empty case interpretation. For Senior Driver, the marital status of the driver
does not matter. Although there is no combination of Senior Driver and Single mode, the result value is 500 as
for an empty marital status value.

Figure 8: Empty case interpretation in the Decision table

Simple and Smart Rules Tables

Practice shows that most of decision tables have a simple structure: there are conditions for input parameters of
a decision table that check equality of input and condition values, and a return value. Because of this, OpenL
Tablets have simplified decision table representations. A simplified decision table allows skipping condition and
return columns declarations, and thus the table consists of a header, column tit les and condition and return
values, and, optionally, properties.

The following topics are included in this section:

¶ Simple Rules Table

¶ Smart Rules Table

¶ Multiple Return Columns in Smart Rules Tables

¶ Result of Custom Data Type in Smart and Simple Rules Tables

Simple Rules Table

A simplified decision table which has simple conditions for each parameter and a simple return can be easily
represented as a simple rules table.

Unlike smart rules, a simple rule table uses all input parameters to associate them with condition columns in
strict order, determined by simple logic, and using no titles. The value of the first column is compared with the
value of the first input parameter, and so on. The value of the last column (return column) returns as a result.
This means that input parameters must be in the same order as the corresponding condition columns, and the
number of inputs must be equal to the number of conditions.

The simple rules table header format is as follows:

SimpleRules <Return t ype> RuleN ame(<Parameter type 1> parame te rName1, (<Para mete r t ype 2>

par ameter Name 2é.)

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 19 of 156

The following is an example of a simple rules table header:

Figure 9: Simple rules table example

Note: If a string value contains a comma, the value must be delimited with the backslash (\) separator followed
by a comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays in

Smart and Simple Decision Tables.

Restrictions for a simplified decision table are as follows:

¶ Condition values must be of the same type or be an array or range of the same type as corresponding input
parameters.

¶ Return values must have the type of the return type from the decision table header.

Smart Rules Table

A decision table which has simple conditions for input parameters and a direct return (without expression) can
be easily represented as a smart rules table. Comparing to a simple rules table, a smart rules table type is used
more frequently because smart rules are more flexible and cover wider range of business requirements.

The smart rules table header format is as follows:

SmartRules <Return type> Rul eName(<Paramete r t yp e 1> p arameter Name1, (<Parameter type 2>

parameterN ame 2é)

Figure 10: Smart rules table with simple return value

OpenL Tablets identifies which condition ͫ olumns correspond to which input parameters by condition tit les and
parameter names. First of all, OpenL parses a parameter name and splits it into words, as it interprets a part
starting with a capital letter as a separate word. Then it calculates the percentage of matching words in all
columns and selects the column with the highest percentage of coincidence. If the analysis returns more than
one result, OpenL throws an error and requires a more unique name for the column.

In case of a custom datatype input, OpenL verifies all fields of the input object to match them separately with
appropriate conditions using field names, in addition to input names, and column titles.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 20 of 156

Figure 11: Smart rules table with object-input

OpenL is capable of matching abbreviations as well.

During rules execution, the system checks condition and input values on equality or inclusion and returns the
result from the return columns, that is, the last columns identified as the result.

In the example above, the driverType value is compared with values from the Type of Driver column, the
maritalStatus value is compared with the Marital Status column values, and the value from the Driver Premium
column is returned as the result.

Note: To insure the system checks a condition with an appropriate input parameter, the user can έƘƻǾŜǊέ with a mouse
over the column title and see the hint with this information in OpenL Tablets WebStudio.

If a string value of the condition contains a comma, the value must be delimited with the backslash (\) separator
followed by the comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays
in Smart and Simple Decision Tables:

Figure 12: Comma within a string value in a Smart table

To define a range of values, two columns of the condition can be merged. In this case, the whole condition is
interpreted as min <= input parameter && input parameter < max.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 21 of 156

Figure 13: Using min and max values for a range in the condition column

Special conditions not matching any particular input fields can be used in smart rules tables, for example, for
validation rules definition. Column header for such condition must contaiƴ ǘƘŜ ǿƻǊŘ ΨǘǊǳŜΩΦ LŦ ǘƘŜǊŜ ŀǊŜ ƻǘƘŜǊ
condition headers contaƛƴƛƴƎ ǘƘŜ ǿƻǊŘ ΨǘǊǳŜΩ, the name must be exǇƭƛŎƛǘƭȅ ŘŜŎƭŀǊŜŘ ŀǎ άLǎ ¢ǊǳŜΚέΦ All values in
such column are expressions or Boolean values. Such condition can also be used in the smart lookup tables.

Figure 14: Example of a condition that is a Boolean expression

If there is a horizontal condition of the Boolean type and the condition title is not a merged cell, it is preferable
to use the title is true? instead of true because the title can be interpreted as a horizontal condition and cause
wrong compilation.

A smart rule table can contain multiple and compound returns as described in Multiple Return Columns in Smart
Rules Tables and use external tables as described in External Tables Usage in Smart Decision Tables.

Multiple Return Columns in Smart Rules Tables

A smart rules table can contain up to three return columns. If the first return column contains a non-empty
result, it is returned, otherwise, the next return column is scanned until the non-empty result is found or the last
return column is verified.

The following example illustrates a table with multiple return columns.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 22 of 156

Figure 15: Example of a smart rules table with multiple return columns

In this example, the QuoteVolume rule has one condition, Coverage Type, and two return columns, Volume 1
and Volume 2. An example of the test table for this rule table is as follows.

Figure 16: Example of the test table for a rule table with multiple return columns

In the test table, Plan 1 is not of the Medical coverage type, so the second rule line is applied. In the test table,
for the first test case, both History Premium and History Rate are provided, so Volume is calculated as 480 by
the rule of Volume 1 column. For the second and third test case, one of inputs is missing, so Volume 1 returns
an empty result, and the second return column calls another rule causing the result of 500 returned.

Note for experienced users: In case of a complex return object, only one compound return consisting of several return
columns is allowed. All other returns can be defined using the formulas, that is, the new() operator or by calling
another rule that returns the object of the corresponding type. For more information on complex return objects, see
Result of Custom Data Type in Smart and Simple Rules Tables.

Result of Custom Data Type in Smart and Simple Rules Tables

A simplified rules table can return the value of compound type (custom data type) ς the whole data object. To
accomplish this, the user must make return column titles close to the corresponding fields of the object so the
system can associate the data from the return columns with the returned object fields correctly. For more
information on datatype tables, see Datatype Table.

In the example below, the rule VehicleDiscount determines the ǾŜƘƛŎƭŜǎΩǎ discount type and rate depending on
air bags type and alarm indicator:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 23 of 156

Figure 17: Smart rules table with compound return value

Note: To insure the system matches the return column with an appropriate return object field, the user can
έƘƻǾŜǊέ over the column tit le and see the hint with this information in WebStudio.

Note: Return object fields are automatically filled in with input values if the return field name and input field
name are matched.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 24 of 156

Figure 18: Return object fields automatically filled in with input values

If the rule returns the result of a very complex object (with nested objects inside), then there are several options
for creating column titles:

¶ titles in one row with names that can be matched to the object fields unambiguously (the previously
described approach) as shown in the example below, rule VehicleDiscount1;

¶ titles in several rows to define the hierarcy (structure) of the return object; in this case the user can merge
cells associated with fields of a nested object as shown on the example below, rule VehicleDiscount2. Using
this option, merging condition titles is required.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 25 of 156

Figure 19: Smart rules tables with compound return value

Simple and Smart Lookup Tables

This section introduces lookup tables and includes the following topics:

¶ Understanding Lookup Tables

¶ Lookup Tables Implementation Details

¶ Simple Lookup Table

¶ Smart Lookup Table

Understanding Lookup Tables

A lookup table is a special modification of the decision table which simultaneously contains vertical and
horizontal conditions and returns value on crossroads of matching condition values.

That means condition values can appear either on the left of the lookup table or on the top of it. The values on
the left are called vertical and values on the top are called horizontal. Any lookup table must have at least one
vertical and at least one horizontal value.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 26 of 156

Figure 20: A lookup table example

Lookup Tables Implementation Details

This section describes internal OpenL Tablets logic.

At first, the table goes through parsing and validation.

¶ On parsing, all parts of the table, such as header, columns headers, vertical conditions, horizontal conditions,
return column, and their values, are extracted.

¶ On validation, OpenL checks if the table structure is proper.

Then OpenL Tablets transforms a lookup table into a regular decision table internally and processes it as a
regular decision table.

Simple Lookup Table

A lookup decision table with simple conditions that check equality of an input parameter and a condition value
and a simple return can be easy represented as simple lookup table. This table is similar to simple rules table
but has horizontal conditions. The number of parameters to be associated with horizontal conditions is
determined by the height of the first column title cell.

The simple lookup table header format is as follows:

SimpleLookup <Return type> Rul eName(<Para meter ty pe 1> parameterName1, (<Par amet er typ e 2>

parameterName2,é.)

The following is an example of a simple lookup table.

Figure 21: Simple lookup table example

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 27 of 156

Smart Lookup Table

A lookup decision table with simple conditions that check equality or inclusion of an input parameter with a
condition value and a direct return (without expression) can be easily represented as a smart lookup table. This
table resembles a smart rules table but has horizontal conditions.

The smart lookup table header format is as follows:

SmartL ook up < Return type> RuleName(<P arameter typ e 1> parameterName1, (<Par ameter type 2>

para meterNam e2,é.)

Figure 22: Smart lookup table example

Condition matching algorithm for smart lookup tables is the same as for smart rules tables. For vertical
conditions, the system searches for input parameters suitable by title and then, for horizontal conditions, the
system selects input parameters starting with the first of the rest inputs.

Boolean conditions can be used in the smart lookup tables as column headers. For more information on these
conditions, see Smart Rules Table.

The number of horizontal conditions is determined by the height of the first column title cell. This means that
title cells of the vertical conditions must be merged on all rows which go for horizontal conditions.

The following is an example of a smart lookup table with several horizontal conditions:

Figure 23: Smart lookup table with several horizontal conditions

External Tables Usage in Smart Decision Tables

Conditions, returns, and actions declarations can be separated and stored in specific tables and then used in
Smart Decision Tables via column titles. It allows using the Smart Table type for Decision rule even in case of the
complicated condition or return calculation logic. Another benefit is that condition and return declarations can
be reused in several rules, for example, Conditions table as a template. An example is as follows.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 28 of 156

Figure 24: Using external conditions in a smart rules table

In this example, the first condition definition is taken from a separate Conditions table, an external table, and
matched by column titles Agency and Rating of Agency. In OpenL Tablets WebStudio, such titles have links
leading to the corresponding table. Other conditions are matched implicitly with input parameters by their
names. In OpenL Tablets WebStudio, such titles have hints with all corresponding information.

Names of external tables have higher priority over input parameters. First of all, the engine checks if an external
table with such name exists and if it is not found, the engine treats the column title as an input parameter. In the
preceding example, OpenL Tablets first searches for an external table named Agency and finds it. Otherwise, the
engine would treat Agency as input parameter.

External condition/ return/action title must exactly match the title of the condition/ return/action in the smart
decision table. Inputs are matched by smart logic analyzing data types and names. Exact name matching is not
required.

The external element table structure is as follows:

1. The first row is the header containing the keyword, such as Actions, Conditions, or Return, and optionally
the name of the table.

2. The first column under the header contains keyword, such as Inputs, Expression, Parameter, and Title.

3. Every column, starting from the second one, represents the element, that is, condition, action, and return
definition.

Rows with the corresponding keyword contain the following information:

Information in the condition, action, and return definition rows

Element Description

Input Defines input parameters required for expression calculation of the element. It can be common for
several expressions when cells are merged. Input is optional for Returns and Actions.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 29 of 156

Information in the condition, action, and return definition rows

Element Description

Expression Specifies the logical expression of the element. It must be merged accordingly if an element includes
several parameters defined below.

Parameter Stores parameter definition of the element.

4. Title Provides a descriptive column title that is later used in the Smart Decision rule.

5. The first column with keywords can be omitted if the default order Inputs ς Expression ς Parameter ς Title
is used.

Ranges and Arrays in Smart and Simple Decision Tables

Range and array data types can be used in simplified and smart rules and lookup tables. If a condition is
represented as an array or range, the rule is executed for any value from that array or range. As an example, in
the following image, there is the same Car Price for all regions of Belarus and Great Britain, so, using an array,
three rows for each of these countries can be replaced by a single one as displayed in the following table.

Figure 25: Simple lookup table with an array

If a string value contains a comma, the value must be delimited with the backslash (\) separator followed by a
comma as illustrated for Driver\ , Passenger\ , Side in the following example. Otherwise, it is treated as an array
of string elements.

Figure 26: Comma within a string value in a Simple Rule table

The following example explains how to use a range in a simple rules table.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 30 of 156

Figure 27: Simple rules table with a Range

OpenL looks through the Condition column, that is, ZIP Code, meets a range, which is not necessarily the first
one, and defines that all the data in the column are IntRange, where Integer is defined in the header, Integer
vehicleZip.

Simple and smart rules and smart lookup tables support using arrays of ranges. In the following example, the
Z100-Z105, Z107, Z109 condition is a string range array where single elements Z107, Z109 are treated by system
as ranges Z107-Z107, Z109-Z109.

Figure 28: Using arrays of ranges in a table

Note: String ranges are only supported in smart rules tables. For more information on range data types in OpenL Tablets,
see Range Data Types.

Rules Tables

A rules table is a regular decision table with vertical and optional horizontal conditions where the structure of
the condition and return columns is explicitly declared by a user by starting column headers with the characters
specific for each column as described in Decision Table Structure.

By default, each row of the decision table is a separate rule. Even if some cells of condition columns are merged,
OpenL Tablets treats them as unmerged. This is the most common scenario.

Vertical conditions are marked with the Cn and MC1 characters. The MC1 column plays the role of the Rule
column in a table. It determines the height of the result value list. An example is as follows.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 31 of 156

Figure 29: A Decision table with merged condition values

Earthquake Coverage for Brand Y and Brand X has a different list of values, so they are not merged although
their first condition is the same.

Figure 30: A list of values as a result

The horizontal conditions are marked as HC1, HC2 and so on. Every lookup matrix must start from the HC or RET
column. The first HC or RET column must go after all vertical conditions, such as C, Rule, and comment columns.
There can be no comment column in the horizontal conditions part. The RET section can be placed in any place
of the lookup headers row. HC columns do not have the Titles section.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 32 of 156

Figure 31: A lookup table example

The first cell of column titles must be merged on all rows that contain horizontal condition values. The height of
the titles row is determined by the first cell in the row. For example, see the Country cell in the previous
example.

To use multiple column parameters for a condition, return, or action, merge the column header and expression
cells. Use this approach if a condition cannot be presented as a simple AND combination of one-parameter
conditions.

Figure 32: Example of the merged column header and expression cells

Any type of decision tables described previously, that is, Simple Rules, Smart Rules, Simple Lookup, and Smart
Lookup, can be transformed into a Rules table with a detailed condition and return column declaration. Rules
table is the most generic but least frequently used table type because other table types have simplified syntax
and inbuilt logic satisfying specific business needs in a more user-friendly way.

Colors identify how values are related to conditions. The same table represented as a decision table is as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 33 of 156

Figure 33: Lookup table representation as a decision table

Collecting Results in Decision Table

A decision table returns only the first fired, non-empty result in common case. But there are business cases
when all rules in a table must be checked and all results found returned. To do so, use:

¶ Collect keyword right before <Return type > in the table header for Simple and Smart rule table types;

¶ CRET as the return value column header for a regular decision table type;

¶ Define <Return type > as an array.

In the example below, rule InterestTable returns the list of interest schemes of a particular plan:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 34 of 156

Figure 34: Collecting results in Smart and Simple rule table

In the following example, rule PriceTable collects car price information for desired specified country and/or
έƳŀƪŜέ ƻŦ ŀ car:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 35 of 156

Figure 35: Collecting results in regular Decision table

Note for experienced users: Smart and Simple rule tables can return the collection of List, Set, or Collection type. To define
a type of a collection element, use the following syntax: Colle ct as <Element type> <Collection type>

for example, SmartRules Collect as String Li st Greeting (I nte ger hour) .

Local Parameters in Decision Table

When declaring a decision table, the header must contain the following information:

¶ column type

¶ code snippet

¶ declarations of parameters

¶ titles

Recent experience shows that in 95% of cases, users add very simple logic within code snippet, such as just
access to a field from input parameters. In this case, parameter declaration for a column is useless and can be
skipped.

The following topics are included in this section:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 36 of 156

¶ Simplified Declarations

¶ Performance Tips

Simplified Declarations

Case#1

The following image represents a situation when users must provide an expression and simple equal operation
for condition declaration.

Figure 36: Decision table requiring an expression and simple equal operation for condition declaration

This code snippet can be simplified as displayed in the following example.

Figure 37: Simplified decision table

OpenL Engine creates the required parameter automatically when a user omits parameter declaration with the
following information:

1. The parameter name will be P1, where 1 is index of the parameter.

2. The type of the parameter will be the same as the expression type.

In this example, it will be Boolean.

In the next step, OpenL Tablets will create an appropriate condition evaluator.

Note: The parameter name can be omitted in the situation when the cont ai ns(P1, expr essi on val ue) operation for
condition declaration is to be applied. The type of the parameter must be an array of the expression value type.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 37 of 156

Figure 38: Simplified condition declaration

Case#2

The following example illustrates the Greeting rule with the min <= value and value < max condition expression.

Figure 39: The Greeting rule

Instead of the full expression min <= value and value < max, a user can simply use value and OpenL Tablets
automatically recognizes the full condition.

Figure 40: Simplified Greeting rule

Performance Tips

Time for executing the OpenL Tablets rules heavily depends on complexity of condition expressions. To improve
performance, use simple or smart decision table types and simplified condition declarations.

To speed up rules execution, put simple conditions before more complicated ones. In the following example,
simple condition is located before a more complicated one.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 38 of 156

Figure 41: Simple condition location

The main benefit of this approach is performance: expected results are found much faster.

OpenL Tablets enables users to create and maintain tests to ensure reliable work of all rules. A business analyst
performs unit and integration tests by creating test tables on rules through OpenL Tablets WebStudio. As a
result, fully working rules are created and ready to be used.

For test tables, to test the rule table performance, a business analyst uses the Benchmark functionality. For
more information on this functionality, see [OpenL Tablets WebStudio User Guide].

Transposed Decision Tables

Sometimes decision tables look more convenient in the transposed format where columns become rows and
rows become columns. For example, an initial and transposed version of decision table resembles the following:

Figure 42: Transposed decision table

OpenL Tablets automatically detects transposed tables and is able to process them correctly.

Representing Values of Different Types

The following sections describe how to present some values ς list or range of numbers, dates, logical values ς in
OpenL table cells. The following topics are included in this section:

¶ Representing Arrays

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 39 of 156

¶ Representing Date Values

¶ Representing Boolean Values

¶ Representing Range Types

Representing Arrays

For all tables that have properties of the enum[] type or fields of the array type, arrays can be defined as follows:

¶ horizontally

¶ vertically

¶ as comma separated arrays

The first option is to arrange array values horizontally using multiple subcolumns. The following is an example of
this approach:

Figure 43: Arranging array values horizontally

In this example, the contents of the se t variable for the first rule are [1,3,5,7, 9] , and for the second rule,
[2,4,6,8] . Values are read from left to right.

The second option is to present parameter values vertically as follows:

Figure 44: Arranging array values vertically

In the second case, the boundaries between rules are determined by the height of the leftmost cell. Therefore,
an additional column must be added to the table to specify boundaries between arrays.

In both cases, empty cells are not added to the array.

The third option is to define an array by separating values by a comma. If the value itself contains a comma, it
must be escaped using back slash symōƻƭ ά\έ by putting it before the comma.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 40 of 156

Figure 45: Array values separated by comma

In this example, the array consists of the following values:

¶ test 1

¶ test 3, 4

¶ test 2

Figure 46: Array values separated by comma. The second example

In this example, the array consists of the following values:

¶ value1

¶ value2

¶ value3

Representing Date Values

To represent date values in table cells, either Excel format or the following format must be used for the text:

'<month>/<date>/<year>

The value must always be preceded with an apostrophe to indicate that it is text. Excel treats these values as
plain text and does not convert to any specific date format.

The following are valid date value examples:

'5/7/198 1

'1 0/20/2002

' 10/20/02

OpenL Tablets recognizes all Excel date formats.

Representing Boolean Values

OpenL Tablets supports either Excel Boolean format or the following formats of Boolean values as a text:

¶ true, yes, y

¶ false, no, n

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 41 of 156

OpenL Tablets recognizes the Excel Boolean value, such as native Excel Boolean value TRUE or FALSE. For more
information on Excel Boolean values, see Excel help.

Representing Range Types

In OpenL, the following data types are designed to work with ranges:

¶ IntRange

¶ DoubleRange

For more information on these data types used for ranges, see Range Data Types.

Figure 47: Decision table with IntRange

Note: Be careful with using Integer.MAX _VALUE in a decision table. If there is a range with the border
max_number equals to Int eger . MAX_VALUE, for example, [100; 21474 83647] , it is not included to the
range. This is a known limitation.

Using Calculations in Table Cells

OpenL Tablets can perform mathematical calculations involving method input parameters in table cells. For
example, instead of returning a concrete number, a rule can return a result of a calculation involving one of the
input parameters. The calculation result type must match the type of the cell. When editing tables in Excel files,
start the text in the cells containing calculations with an apostrophe followed by =, and for the tables in OpenL
Tablets WebStudio, start the text with =, without an apostrophe. Excel treats such values as a plain text.

The following decision table demonstrates calculations in table cells.

Figure 48: Decision table with calculations

The table transforms a twelve hour time format into a twenty four hour time format. The column RET1 contains
two cells that perform calculations with the input parameter ampmHr.

Calculations use regular Java syntax, similar to the one used in conditions and actions.

Note: Excel formulas are not supported by OpenL Tablets. They are used as pre-calculated values.

Referencing Attributes

To address an attribute of an object in a rule, use the following syntaxes:

