

OpenL Tablets BRMS
Reference Guide

Release 5.25

Document number: TP_OpenL_RG_2.4_LSh

Revised: 03-08-2022

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 5

1.1 Audience .. 5
1.2 Related Information .. 5
1.3 Typographic Conventions .. 5

2 Introducing OpenL Tablets .. 7

2.1 What Is OpenL Tablets? ... 7
2.2 Basic Concepts ... 7

Rules .. 8
Tables .. 8
Projects ... 8

2.3 System Overview ... 8
2.4 Installing OpenL Tablets .. 9
2.5 Tutorials and Examples .. 9

Tutorials .. 9
Examples ... 11

3 Creating Tables for OpenL Tablets ... 12

3.1 Table Recognition Algorithm ... 12
3.2 Table Types .. 13

Decision Table ... 13
Datatype Table .. 47
Data Table ... 51
Test Table .. 58
Run Table .. 62
Method Table .. 62
Configuration Table ... 63
Properties Table .. 65
Spreadsheet Table ... 66
TBasic Table ... 78
Column Match Table ... 78
Constants Table ... 82
Table Part .. 82

3.3 Table Properties .. 85
Category and Module Level Properties ... 85
Default Value ... 86
System Properties ... 86
Properties for a Particular Table Type .. 86
Rule Versioning ... 87
Info Properties .. 100
Dev Properties ... 100
Properties Defined in the File Name ... 107
Properties Defined in the Folder Name .. 110
Keywords Usage in a File Name .. 110

4 OpenL Tablets Functions and Supported Data Types .. 113

4.1 Working with Arrays .. 113

Working with Arrays from Rules ... 113
Array Index Operators ... 114
Operators and Functions to Work with Arrays ... 117
Rules Applied to Array... 118
Rules with Variable Length Arguments ... 119

4.2 Working with Data Types .. 120
Simple Data Types ... 120
Range Data Types .. 121

4.3 Working with Functions... 123
Understanding OpenL Tablets Function Syntax .. 124
Math Functions ... 124
Date Functions .. 128
Special Functions and Operators .. 130
Null Elements Usage in Calculations ... 132

5 Working with Projects .. 134

5.1 Project Structure ... 134
Multi Module Project .. 134
Creating a Project .. 135
Project Sources ... 135

5.2 Rules Runtime Context Management from Rules ... 135
5.3 Project and Module Dependencies ... 137

Dependencies Description .. 138
Dependencies Configuration ... 140
Import Configuration .. 140
Components Behavior ... 141

Appendix A: BEX Language Overview .. 143

Introduction to BEX .. 143
Keywords .. 143
Simplifying Expressions .. 144

Notation of Explanatory Variables .. 144
Uniqueness of Scope ... 144

Operators Used in OpenL Tablets ... 144

Appendix B: Functions Used in OpenL Tablets ... 148

Math Functions ... 148
Array Functions ... 150
Date Functions .. 151
String Functions .. 153
Special Functions .. 155

Index ... 156

OpenL Tablets Reference Guide Preface

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 5 of 157

1 Preface
This preface is an introduction to the OpenL Tablets Reference Guide. The following topics are included in this
preface:

• Audience

• Related Information

• Typographic Conventions

1.1 Audience
This guide is mainly intended for analysts and developers who create applications employing the table based
decision making mechanisms offered by OpenL Tablets technology. However, other users can also benefit from
this guide by learning the basic OpenL Tablets concepts described herein.

Basic knowledge of Excel® is required to use this guide effectively. Basic knowledge of Java is required to follow
the development related sections.

1.2 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Document describing OpenL Tablets WebStudio, a web application for
managing OpenL Tablets projects through a web browser.

http://openl-tablets.org/ OpenL Tablets open source project website.

1.3 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold • Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons, perspectives,
tabs, tooltip labels, tree elements, views, and windows.

• Represents keys, such as F9 or CTRL+A.

• Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic • Represents any information to be entered in a field.

• Represents documentation titles.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Reference Guide Preface

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 6 of 157

Typographic styles and conventions

Convention Description

< > Represents placeholder values to be substituted with user specific values.

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 7 of 157

2 Introducing OpenL Tablets
This chapter introduces OpenL Tablets and describes its main concepts.

The following topics are included in this section:

• What Is OpenL Tablets?

• Basic Concepts

• System Overview

• Installing OpenL Tablets

• Tutorials and Examples

2.1 What Is OpenL Tablets?
OpenL Tablets is a Business Rules Management System (BRMS) and Business Rules Engine (BRE) based on tables
presented in Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents
containing business logic specifications as executable source code. Since the format of tables used by OpenL
Tablets is familiar to business users, OpenL Tablets bridges a gap between business users and developers, thus
reducing costly enterprise software development errors and dramatically shortening the software development
cycle.

In a very simplified overview, OpenL Tablets can be considered as a table processor that extracts tables from
Excel documents and makes them accessible from software applications.

The major advantages of using OpenL Tablets are as follows:

• OpenL Tablets removes the gap between software implementation and business documents, rules, and
policies.

• Business rules become transparent to developers.

• OpenL Tablets verifies syntax and type errors in all project document data, providing convenient and
detailed error reporting.

• OpenL Tablets can directly point to a problem in an Excel document.

• OpenL Tablets provides calculation explanation capabilities, enabling expansion of any calculation result by
pointing to source arguments in the original documents.

• OpenL Tablets provides cross-indexing and search capabilities within all project documents.

• OpenL Tablets provides the ability to create compact and easily readable business rules that become a part
of business documentation.

• Knowledge of Java or any other programming language is not required to create business rules with OpenL
Tablets.

OpenL Tablets supports the .xls, .xlsx, and .xlsm file formats.

2.2 Basic Concepts
This section describes the following main OpenL Tablets concepts:

• Rules

• Tables

• Projects

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 8 of 157

Rules

In OpenL Tablets, a rule is a logical statement consisting of conditions and actions. If a rule is called and all its
conditions are true, then the corresponding actions are executed. Basically, a rule is an IF-THEN statement. The
following is an example of a rule expressed in human language:

If a service request costs less than 1,000 dollars and takes less than 8 hours to execute, then the service request
must be approved automatically.

Instead of executing actions, rules can also return data values to the calling program.

Tables

Basic information OpenL Tablets deals with, such as rules and data, is presented in tables. Tables within one
project must be unique and it is denoted by table name and input parameters. Nevertheless, different versions
of the same table can have the same name and input parameters.

Tables are referenced by calling their names.

Different types of tables serve different purposes. For more information on table types, see Table Types.

Projects

An OpenL Tablets project is a container of all resources required for processing rule related information.
Usually, a project contains Excel files, which are called modules of the project, and optionally Java code, library
dependencies, and other components. For more information on projects, see Working with Projects.

There can be situations where OpenL Tablets projects are used in the development environment but not in
production, depending on the technical aspects of a solution.

2.3 System Overview
The following diagram displays how OpenL Tablets is used by different types of users.

OpenL Tablets
project

P
P

PP
P

PP
P

P

Excel tables

Client
application

IDE

OpenL
WebStudio

Administrator

DeveloperSolution
developer

Business
user

Define and maintain,
test and fix rules

Manage projects,
measure performance

Work on OpenL Tablets
project with Maven

Execute rules through
wrappers

Execute rules through
web services

Figure 1: OpenL Tablets overview

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 9 of 157

A typical lifecycle of an OpenL Tablets project is as follows:

1. A business analyst creates an OpenL Tablets project in OpenL Tablets WebStudio.

2. Optionally, development team may provide the analyst with a project in case of complex configuration.

3. The business analyst creates correctly structured tables in Excel files based on requirements and includes
them in the project.

Typically, this task is performed through Excel or OpenL Tablets WebStudio in a web browser.

4. Business analyst performs unit and integration tests by creating test tables and performance tests on rules
through OpenL Tablets WebStudio.

As a result, fully working rules are created and ready to be used.

5. Development team creates other parts of the solution and employs business rules directly through the
OpenL Tablets engine or remotely through web services.

6. Whenever required, a business user updates or adds new rules to project tables.

OpenL Tablets business rules management applications, such as OpenL Tablets WebStudio, Rules Repository,
and OpenL Tablets Rule Services, can be set up to provide self-service environment for business user
changes.

2.4 Installing OpenL Tablets
OpenL Tablets installation instructions are provided in [OpenL Tablets Installation Guide].

The development environment is required only for creating OpenL Tablets projects and launching OpenL Tablets
WebStudio or OpenL Tablets Rule Services. If OpenL Tablets projects are accessed through OpenL Tablets
WebStudio or web services, no specific software needs to be installed.

2.5 Tutorials and Examples
OpenL Tablets provides a number of preconfigured projects developed for new users who want to learn working
with OpenL Tablets quickly.

These projects are organized into following groups:

• Tutorials

• Examples

Tutorials

OpenL Tablets provides a set of tutorial projects demonstrating basic OpenL Tablets features starting from very
simple and following with more advanced projects. Files in the tutorial projects contain detailed comments
allowing new users to grasp basic concepts quickly.

To create a tutorial project, proceed as follows:

1. To open Repository Editor, in OpenL Tablets WebStudio, in the top line menu, click the Repository item.

2. Click the Create Project button .

3. In the Create Project from window, click the required tutorial name.

4. Click Create to complete.

The project appears in the Projects list of Repository Editor.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20Installation%20Guide.pdf

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 10 of 157

Figure 2: Creating tutorial projects

5. In the top line menu, click Rules Editor.

The project is displayed in the Projects list and available for usage. It is highly recommended to start from
reading Excel files for examples and tutorials which provide clear explanations for every step involved.

OpenL Tablets Reference Guide Introducing OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 11 of 157

Figure 3: Tutorial project in the OpenL Tablets WebStudio

Examples

In addition to tutorials, OpenL Tablets provides several example projects that demonstrate how OpenL Tablets
can be used in various business domains.

To create an example project, follow the steps described in Tutorials, and in the Create Project from dialog,
select an example to explore. When completed, the example appears in the OpenL Tablets WebStudio Rules
Editor as displayed in the Figure 3.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 12 of 157

3 Creating Tables for OpenL Tablets
This chapter describes how OpenL Tablets processes tables and provides reference information for each table
type used in OpenL Tablets.

The following topics are included in this chapter:

• Table Recognition Algorithm

• Table Types

• Table Properties

3.1 Table Recognition Algorithm
This section describes an algorithm of how the OpenL Tablets engine looks for supported tables in Excel files. It is
important to build tables according to the requirements of this algorithm; otherwise, the tables are not
recognized correctly.

OpenL Tablets utilizes Excel concepts of workbooks and worksheets, which can be represented and maintained
in multiple Excel files. OpenL Tablets does not use any of Excel's formula capabilities though. Any calculations
performed in OpenL Tablets are done using OpenL syntax, which is completely distinct from any formula syntax
used by Excel. Excel worksheets can be named and arranged within one workbook in the order convenient to a
user. Each worksheet, in its turn, is comprised of one or more tables. Workbooks can include tables of different
types, each one supporting different underlying logic.

The general table recognition algorithm is as follows:

1. The engine looks into each spreadsheet and tries to identify logical tables.

Logical tables must be separated by at least one empty row or column or start at the very first row or
column. Table parsing is performed from left to right and from top to bottom. The first populated cell that
does not belong to a previously parsed table becomes the top-left corner of a new logical table.

2. The engine reads text in the top left cell of a recognized logical table to determine its type.

If the top left cell of a table starts with a predefined keyword, such table is recognized as an OpenL Tablets
table.

The following are the supported keywords:

Table type keywords

Keyword Table type

Constants Constants Table

ColumnMatch Column Match Table

Data Data Table

Datatype Datatype Table

Environment Configuration Table

Method Method Table

Properties Properties Table

Rules Decision Table

Run Run Table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 13 of 157

Table type keywords

Keyword Table type

SimpleLookup Simple Lookup Table

SimpleRules Simple Rules Table

SmartLookup Smart Lookup Table

SmartRules Smart Rules Table

Spreadsheet Spreadsheet Table

TablePart Table Part

TBasic or Algorithm TBasic Table

Test Test Table

All tables that do not have any of the preceding keywords in the top left cell are ignored. They can be used
as comments in Excel files.

3. The engine determines the width and height of the table using populated cells as clues.

It is a good practice to merge all cells in the first table row, so the first row explicitly specifies the table width.
The first row is called the table header.

Note: To put a table title before the header row, an empty row must be used between the title and the first row of the
actual table.

3.2 Table Types
OpenL Tablets supports the following table types:

• Decision Table

• Datatype Table

• Data Table

• Test Table

• Run Table

• Method Table

• Configuration Table

• Properties Table

• Spreadsheet Table

• TBasic Table

• Column Match Table

• Constants Table

• Table Part

Decision Table

A decision table contains a set of rules describing decision situations where the state of a number of conditions
determines execution of a set of actions and returned value. It is a basic table type used in OpenL Tablets
decision making.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 14 of 157

SmartRules Double DriverPremium (Driver driver, Double additionalCharge)

Driver Type
Years

Driving
Experience

Premium

Principal
0 10 $600

10 40 $550

Occasional
0 15 $750

15 40 $700

Excluded, Non-Driver = NonDriverPremiumByAge (driverType, age)

 = $600 + additionalCharge

Figure 4: Decision table example

The following topics are included in this section:

• Decision Table Structure

• Decision Table Interpretation

• Simple and Smart Rules Tables

• Simple and Smart Lookup Tables

• External Tables Usage in Smart Decision Tables

• Ranges and Arrays in Smart and Simple Decision Tables

• Rules Tables

• Collecting Results in Decision Table

• Local Parameters in Decision Table

• Transposed Decision Tables

• Representing Values of Different Types

• Using Calculations in Table Cells

• Referencing Attributes

• Calling a Table from Another Table

• Using Referents from Return Column Cells

• Using Rule Names and Rule Numbers in the Return Column

Decision Table Structure

An example of a decision table is as follows:

Figure 5: Decision table

The following table describes the full structure of a decision table with the Rules keyword:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 15 of 157

Decision table structure

Row number Mandatory Description

1 Yes Table header, which has the following pattern:
<keyword> <rule header>

where <keyword> is either 'Rules' or 'DT' and <rule header> is a signature of a table
with names and types of the rule and its parameters used to access the decision table
and provide input parameters.

2 Yes Row consisting of the following cell types:

Type Description Examples

Condition
column header

Identifies that the column contains a rule
condition and its parameters. It must start with
the “C” character followed by a number or be
“MC1” for the 1st column with merged rows. If the
condition has several parameters, the cell must
be merged on all its parameter columns.

C1, C5,

C8

MC1

Horizontal
condition
column header

Identifies that the column contains a horizontal
rule condition and its parameter (horizontal
condition can have only one parameter). It must
start with the “HC” character followed by a
number.

Horizontal conditions are used in lookup tables
only.

HC1, HC5,

HC8

Action column
header

Identifies that the column contains rule actions. It
must start with the “A” character followed by a
number.

A1, A2,

A5

Return value
column header

Identifies that the column contains values to be
returned to the calling program. A table can have
multiple return columns, however, only the first
fired non-empty value is returned.

RET1

All other cells in this row are ignored and can be used as comments.

If a table contains action columns, the engine executes actions for all rules with true
conditions. If a table has a return column, the engine stops processing rules after the
first executed rule with true conditions and non-empty result found

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 16 of 157

Decision table structure

Row number Mandatory Description

3 Yes Row containing cells with expression statements for condition, action, and return value
column headers. OpenL Tablets supports Java grammar enhanced with OpenL Tablets
Business Expression (BEX) grammar features. For more information on the BEX language,
see Appendix A: BEX Language Overview.

In most cases, OpenL Tablets Business Expression grammar covers all the variety of
expression statements and an OpenL user does not need to learn Java syntax.

The code in these cells can use any objects and functions visible to the OpenL Tablets
engine as elsewhere. For more information on enabling the OpenL Tablets engine to use
custom Java packages, see Configuration Table.

Purpose of each cell in this row depends on the cell above is as follows:

Cell above Purpose

Condition column
header

Specifies the logical expression of the condition. It can reference
parameters in the table header and parameters in cells below.

The cell can contain several expressions, but the last expression
must return a Boolean value. All condition expressions must be
true to execute a rule.

Horizontal
condition

The same as Condition column header.

Action column
header

Specifies expression to be executed if all conditions of the rule
are true. The expression can reference parameters in the rule
header and parameters in the cells below.

Return value
column header

Specifies expression used for calculating the return value. The
type of the last expression must match the return value
specified in the rule header. The explicit return statement with
the keyword “return” is also supported.

This cell can reference parameters in the rule header and
parameters in the cells below.

4 Yes Row containing parameter definition cells. Each cell in this row specifies the type and
name of parameters in the cells below it.

Parameter name must be one word long.

Parameter type must be one of the following:

• simple data types

• aggregated data types or Java classes visible to the engine

• arrays of the above types as described in Representing Arrays

5 Yes Descriptive column titles. The rule engine does not use them in calculations but they are
intended for business users working with the table. Cells in this row can contain any
arbitrary text and be of any layout that does not correspond to other table parts. The
height of the row is determined by the first cell in the row.

6 and below Yes Concrete parameter values. Any cell can contain formula, a mathematical one or a rule
call, instead of concrete value and calculate the value. This formula can reference
parameters in the rule header and any parameters of condition columns in the return
column.

A user can merge cells of parameter values to substitute multiple single cells when the same value needs to be
defined in these single cells. During rule execution, OpenL Tables unmerges these cells.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 17 of 157

The additional Rule column with merged cells is used as the first column when the return value must be a list of
values written in multiple rows of the same column, that is, a vertically arranged array. The Rule column
determines the height of the result value list.

Figure 6: A table with the Rule column as the first column

Figure 7: Result in the vertically arranged array format

The rule column can be defined for rules tables and smart rules tables.

Decision Table Interpretation

Rules inside decision tables are processed one by one in the order they are placed in the table. A rule is executed
only when all its conditions are true. If at least one condition returns false, all other conditions in the same row
are ignored.

Blank parameter value cell of the condition is interpreted as a true condition and this condition is ignored for a
particular rule row or column. If the condition column has several parameters, the condition with all its
parameter cells blank is interpreted as a true condition.

Note: As OpenL Tablets returns the first true condition, it is a good practice to list all possible non-blank parameters and
their combinations in case of multiple conditioning first, and then list the blank parameters.

Blank parameter value cell of the return/action column is ignored, the system does not calculate the
return/action expression of the current rule and starts processing the next rule. If the return/action column has
several parameters, all parameters cells need to be blank to ignore the rule.

If the empty return value is calculated by the expression, the system starts processing the next rule searching for
a non-empty result.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 18 of 157

The following example contains empty case interpretation. For Senior Driver, the marital status of the driver
does not matter. Although there is no combination of Senior Driver and Single mode, the result value is 500 as
for an empty marital status value.

Figure 8: Empty case interpretation in the Decision table

Simple and Smart Rules Tables

Practice shows that most of decision tables have a simple structure: there are conditions for input parameters of
a decision table that check equality of input and condition values, and a return value. Because of this, OpenL
Tablets have simplified decision table representations. A simplified decision table allows skipping condition and
return columns declarations, and thus the table consists of a header, column titles and condition and return
values, and, optionally, properties.

The following topics are included in this section:

• Simple Rules Table

• Smart Rules Table

• Multiple Return Columns in Smart Rules Tables

• Result of Custom Data Type in Smart and Simple Rules Tables

Simple Rules Table

A simplified decision table which has simple conditions for each parameter and a simple return can be easily
represented as a simple rules table.

Unlike smart rules, a simple rule table uses all input parameters to associate them with condition columns in
strict order, determined by simple logic, and using no titles. The value of the first column is compared with the
value of the first input parameter, and so on. The value of the last column (return column) returns as a result.
This means that input parameters must be in the same order as the corresponding condition columns, and the
number of inputs must be equal to the number of conditions.

The simple rules table header format is as follows:

SimpleRules <Return type> RuleName(<Parameter type 1> parameterName1, (<Parameter type 2>

parameterName 2….)

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 19 of 157

The following is an example of a simple rules table header:

Figure 9: Simple rules table example

Note: If a string value contains a comma, the value must be delimited with the backslash (\) separator followed
by a comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays in

Smart and Simple Decision Tables.

Restrictions for a simplified decision table are as follows:

• Condition values must be of the same type or be an array or range of the same type as corresponding input
parameters.

• Return values must have the type of the return type from the decision table header.

Smart Rules Table

A decision table which has simple conditions for input parameters and a direct return (without expression) can
be easily represented as a smart rules table. Comparing to a simple rules table, a smart rules table type is used
more frequently because smart rules are more flexible and cover wider range of business requirements.

The smart rules table header format is as follows:

SmartRules <Return type> RuleName(<Parameter type 1> parameterName1, (<Parameter type 2>

parameterName 2…)

Figure 10: Smart rules table with simple return value

OpenL Tablets identifies which condition сolumns correspond to which input parameters by condition titles and
parameter names. First of all, OpenL parses a parameter name and splits it into words, as it interprets a part
starting with a capital letter as a separate word. Then it calculates the percentage of matching words in all
columns and selects the column with the highest percentage of coincidence. If the analysis returns more than
one result, OpenL throws an error and requires a more unique name for the column.

In case of a custom datatype input, OpenL verifies all fields of the input object to match them separately with
appropriate conditions using field names, in addition to input names, and column titles.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 20 of 157

Figure 11: Smart rules table with object-input

OpenL is capable of matching abbreviations as well.

During rules execution, the system checks condition and input values on equality or inclusion and returns the
result from the return columns, that is, the last columns identified as the result.

In the example above, the driverType value is compared with values from the Type of Driver column, the
maritalStatus value is compared with the Marital Status column values, and the value from the Driver Premium
column is returned as the result.

Note: To insure the system checks a condition with an appropriate input parameter, the user can ”hover” with a mouse
over the column title and see the hint with this information in OpenL Tablets WebStudio.

If a string value of the condition contains a comma, the value must be delimited with the backslash (\) separator
followed by the comma. Otherwise, it is treated as an array of string elements as described in Ranges and Arrays
in Smart and Simple Decision Tables:

Figure 12: Comma within a string value in a Smart table

To define a range of values, two columns of the condition can be merged. In this case, the whole condition is
interpreted as min <= input parameter && input parameter < max.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 21 of 157

Figure 13: Using min and max values for a range in the condition column

Special conditions not matching any particular input fields can be used in smart rules tables, for example, for
validation rules definition. Column header for such condition must contain the word ‘true’. If there are other
condition headers containing the word ‘true’, the name must be explicitly declared as “Is True?”. All values in
such column are expressions or Boolean values. Such condition can also be used in the smart lookup tables.

Figure 14: Example of a condition that is a Boolean expression

If there is a horizontal condition of the Boolean type and the condition title is not a merged cell, it is preferable
to use the title is true? instead of true because the title can be interpreted as a horizontal condition and cause
wrong compilation.

A smart rule table can contain multiple and compound returns as described in Multiple Return Columns in Smart
Rules Tables and use external tables as described in External Tables Usage in Smart Decision Tables.

Multiple Return Columns in Smart Rules Tables

A smart rules table can contain up to three return columns. If the first return column contains a non-empty
result, it is returned, otherwise, the next return column is scanned until the non-empty result is found or the last
return column is verified.

The following example illustrates a table with multiple return columns.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 22 of 157

Figure 15: Example of a smart rules table with multiple return columns

In this example, the QuoteVolume rule has one condition, Coverage Type, and two return columns, Volume 1
and Volume 2. An example of the test table for this rule table is as follows.

Figure 16: Example of the test table for a rule table with multiple return columns

In the test table, Plan 1 is not of the Medical coverage type, so the second rule line is applied. In the test table,
for the first test case, both History Premium and History Rate are provided, so Volume is calculated as 480 by
the rule of Volume 1 column. For the second and third test case, one of inputs is missing, so Volume 1 returns
an empty result, and the second return column calls another rule causing the result of 500 returned.

Note for experienced users: In case of a complex return object, only one compound return consisting of several return
columns is allowed. All other returns can be defined using the formulas, that is, the new() operator or by calling
another rule that returns the object of the corresponding type. For more information on complex return objects, see
Result of Custom Data Type in Smart and Simple Rules Tables.

Result of Custom Data Type in Smart and Simple Rules Tables

A simplified rules table can return the value of compound type (custom data type) – the whole data object. To
accomplish this, the user must make return column titles close to the corresponding fields of the object so the
system can associate the data from the return columns with the returned object fields correctly. For more
information on datatype tables, see Datatype Table.

In the example below, the rule VehicleDiscount determines the vehicles’s discount type and rate depending on
air bags type and alarm indicator:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 23 of 157

Figure 17: Smart rules table with compound return value

Note: To insure the system matches the return column with an appropriate return object field, the user can
”hover” over the column title and see the hint with this information in WebStudio.

Note: Return object fields are automatically filled in with input values if the return field name and input field
name are matched.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 24 of 157

Figure 18: Return object fields automatically filled in with input values

If the rule returns the result of a very complex object (with nested objects inside), then there are several options
for creating column titles:

• titles in one row with names that can be matched to the object fields unambiguously (the previously
described approach) as shown in the example below, rule VehicleDiscount1;

• titles in several rows to define the hierarcy (structure) of the return object; in this case the user can merge
cells associated with fields of a nested object as shown on the example below, rule VehicleDiscount2. Using
this option, merging condition titles is required.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 25 of 157

Figure 19: Smart rules tables with compound return value

Simple and Smart Lookup Tables

This section introduces lookup tables and includes the following topics:

• Understanding Lookup Tables

• Lookup Tables Implementation Details

• Simple Lookup Table

• Smart Lookup Table

Understanding Lookup Tables

A lookup table is a special modification of the decision table which simultaneously contains vertical and
horizontal conditions and returns value on crossroads of matching condition values.

That means condition values can appear either on the left of the lookup table or on the top of it. The values on
the left are called vertical and values on the top are called horizontal. Any lookup table must have at least one
vertical and at least one horizontal value.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 26 of 157

Figure 20: A lookup table example

Lookup Tables Implementation Details

This section describes internal OpenL Tablets logic.

At first, the table goes through parsing and validation.

• On parsing, all parts of the table, such as header, columns headers, vertical conditions, horizontal conditions,
return column, and their values, are extracted.

• On validation, OpenL checks if the table structure is proper.

Then OpenL Tablets transforms a lookup table into a regular decision table internally and processes it as a
regular decision table.

Simple Lookup Table

A lookup decision table with simple conditions that check equality of an input parameter and a condition value
and a simple return can be easily represented as simple lookup table. This table is similar to simple rules table
but has horizontal conditions. The number of parameters to be associated with horizontal conditions is
determined by the height of the first column title cell.

The simple lookup table header format is as follows:

SimpleLookup <Return type> RuleName(<Parameter type 1> parameterName1, (<Parameter type 2>

parameterName2,….)

The following is an example of a simple lookup table.

Figure 21: Simple lookup table example

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 27 of 157

Smart Lookup Table

A lookup decision table with simple conditions that check equality or inclusion of an input parameter with a
condition value and a direct return (without expression) can be easily represented as a smart lookup table. This
table resembles a smart rules table but has horizontal conditions.

The smart lookup table header format is as follows:

SmartLookup <Return type> RuleName(<Parameter type 1> parameterName1, (<Parameter type 2>

parameterName2,….)

Figure 22: Smart lookup table example

Condition matching algorithm for smart lookup tables is the same as for smart rules tables. For vertical
conditions, the system searches for input parameters suitable by title and then, for horizontal conditions, the
system selects input parameters starting with the first of the rest inputs.

Boolean conditions can be used in the smart lookup tables as column headers. For more information on these
conditions, see Smart Rules Table.

The number of horizontal conditions is determined by the height of the first column title cell. This means that
title cells of the vertical conditions must be merged on all rows which go for horizontal conditions.

The following is an example of a smart lookup table with several horizontal conditions:

Figure 23: Smart lookup table with several horizontal conditions

OpenL Tablets supports titles for horizontal conditions using the following syntax:

Figure 24: Slash character in a red cell identifying a condition title

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 28 of 157

Figure 25: Algorithm identifying the third column as horizontal condition titles because the third column values are empty

If the height of the horizontal condition is 1, and there is a vertical condition with an empty column, the
horizontal titles must be started with a slash /.

External Tables Usage in Smart Decision Tables

Conditions, returns, and actions declarations can be separated and stored in specific tables and then used in
Smart Decision Tables via column titles. It allows using the Smart Table type for Decision rule even in case of the
complicated condition or return calculation logic. Another benefit is that condition and return declarations can
be reused in several rules, for example, Conditions table as a template. An example is as follows.

Figure 26: Using external conditions in a smart rules table

In this example, the first condition definition is taken from a separate Conditions table, an external table, and
matched by column titles Agency and Rating of Agency. In OpenL Tablets WebStudio, such titles have links
leading to the corresponding table. Other conditions are matched implicitly with input parameters by their
names. In OpenL Tablets WebStudio, such titles have hints with all corresponding information.

Names of external tables have higher priority over input parameters. First of all, the engine checks if an external
table with such name exists and if it is not found, the engine treats the column title as an input parameter. In the
preceding example, OpenL Tablets first searches for an external table named Agency and finds it. Otherwise, the
engine would treat Agency as input parameter.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 29 of 157

External condition/return/action title must exactly match the title of the condition/return/action in the smart
decision table. Inputs are matched by smart logic analyzing data types and names. Exact name matching is not
required.

The external element table structure is as follows:

1. The first row is the header containing the keyword, such as Actions, Conditions, or Return, and optionally
the name of the table.

2. The first column under the header contains keyword, such as Inputs, Expression, Parameter, and Title.

3. Every column, starting from the second one, represents the element, that is, condition, action, and return
definition.

Rows with the corresponding keyword contain the following information:

Information in the condition, action, and return definition rows

Element Description

Input Defines input parameters required for expression calculation of the element. It can be common for
several expressions when cells are merged. Input is optional for Returns and Actions.

Expression Specifies the logical expression of the element. It must be merged accordingly if an element includes
several parameters defined below.

Parameter Stores parameter definition of the element.

4. Title Provides a descriptive column title that is later used in the Smart Decision rule.

5. The first column with keywords can be omitted if the default order Inputs – Expression – Parameter – Title
is used.

Ranges and Arrays in Smart and Simple Decision Tables

Range and array data types can be used in simplified and smart rules and lookup tables. If a condition is
represented as an array or range, the rule is executed for any value from that array or range. As an example, in
the following image, there is the same Car Price for all regions of Belarus and Great Britain, so, using an array,
three rows for each of these countries can be replaced by a single one as displayed in the following table.

Figure 27: Simple lookup table with an array

If a string value contains a comma, the value must be delimited with the backslash (\) separator followed by a
comma as illustrated for Driver\, Passenger\, Side in the following example. Otherwise, it is treated as an array
of string elements.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 30 of 157

Figure 28: Comma within a string value in a Simple Rule table

The following example explains how to use a range in a simple rules table.

Figure 29: Simple rules table with a Range

OpenL looks through the Condition column, that is, ZIP Code, meets a range, which is not necessarily the first
one, and defines that all the data in the column are IntRange, where Integer is defined in the header, Integer
vehicleZip.

Simple and smart rules and smart lookup tables support using arrays of ranges. In the following example, the
Z100-Z105, Z107, Z109 condition is a string range array where single elements Z107, Z109 are treated by system
as ranges Z107-Z107, Z109-Z109.

Figure 30: Using arrays of ranges in a table

Note: String ranges are only supported in smart rules tables. For more information on range data types in OpenL Tablets,
see Range Data Types.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 31 of 157

Rules Tables

A rules table is a regular decision table with vertical and optional horizontal conditions where the structure of
the condition and return columns is explicitly declared by a user by starting column headers with the characters
specific for each column as described in Decision Table Structure.

By default, each row of the decision table is a separate rule. Even if some cells of condition columns are merged,
OpenL Tablets treats them as unmerged. This is the most common scenario.

Vertical conditions are marked with the Cn and MC1 characters. The MC1 column plays the role of the Rule
column in a table. It determines the height of the result value list. An example is as follows.

Figure 31: A Decision table with merged condition values

Earthquake Coverage for Brand Y and Brand X has a different list of values, so they are not merged although
their first condition is the same.

Figure 32: A list of values as a result

The horizontal conditions are marked as HC1, HC2 and so on. Every lookup matrix must start from the HC or RET
column. The first HC or RET column must go after all vertical conditions, such as C, Rule, and comment columns.
There can be no comment column in the horizontal conditions part. The RET section can be placed in any place
of the lookup headers row. HC columns do not have the Titles section.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 32 of 157

Figure 33: A lookup table example

The first cell of column titles must be merged on all rows that contain horizontal condition values. The height of
the titles row is determined by the first cell in the row. For example, see the Country cell in the previous
example.

To use multiple column parameters for a condition, return, or action, merge the column header and expression
cells. Use this approach if a condition cannot be presented as a simple AND combination of one-parameter
conditions.

Figure 34: Example of the merged column header and expression cells

Any type of decision tables described previously, that is, Simple Rules, Smart Rules, Simple Lookup, and Smart
Lookup, can be transformed into a Rules table with a detailed condition and return column declaration. Rules
table is the most generic but least frequently used table type because other table types have simplified syntax
and inbuilt logic satisfying specific business needs in a more user-friendly way.

Colors identify how values are related to conditions. The same table represented as a decision table is as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 33 of 157

Figure 35: Lookup table representation as a decision table

Collecting Results in Decision Table

A decision table returns only the first fired, non-empty result in common case. But there are business cases
when all rules in a table must be checked and all results found returned. To do so, use:

• Collect keyword right before <Return type> in the table header for Simple and Smart rule table types;

• CRET as the return value column header for a regular decision table type;

• Define <Return type> as an array.

In the example below, rule InterestTable returns the list of interest schemes of a particular plan:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 34 of 157

Figure 36: Collecting results in Smart and Simple rule table

In the following example, rule PriceTable collects car price information for desired specified country and/or
”make” of a car:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 35 of 157

Figure 37: Collecting results in regular Decision table

Note for experienced users: Smart and Simple rule tables can return the collection of List, Set, or Collection type. To define
a type of a collection element, use the following syntax: Collect as <Element type> <Collection type>
for example, SmartRules Collect as String List Greeting (Integer hour).

Local Parameters in Decision Table

When declaring a decision table, the header must contain the following information:

• column type

• code snippet

• declarations of parameters

• titles

Recent experience shows that in 95% of cases, users add very simple logic within code snippet, such as just
access to a field from input parameters. In this case, parameter declaration for a column is useless and can be
skipped.

The following topics are included in this section:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 36 of 157

• Simplified Declarations

• Performance Tips

Simplified Declarations

Case#1

The following image represents a situation when users must provide an expression and simple equal operation
for condition declaration.

Figure 38: Decision table requiring an expression and simple equal operation for condition declaration

This code snippet can be simplified as displayed in the following example.

Figure 39: Simplified decision table

OpenL Engine creates the required parameter automatically when a user omits parameter declaration with the
following information:

1. The parameter name will be P1, where 1 is index of the parameter.

2. The type of the parameter will be the same as the expression type.

In this example, it will be Boolean.

In the next step, OpenL Tablets will create an appropriate condition evaluator.

Note: The parameter name can be omitted in the situation when the contains(P1, expression value) operation for
condition declaration is to be applied. The type of the parameter must be an array of the expression value type.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 37 of 157

Figure 40: Simplified condition declaration

Case#2

The following example illustrates the Greeting rule with the min <= value and value < max condition expression.

Figure 41: The Greeting rule

Instead of the full expression min <= value and value < max, a user can simply use value and OpenL Tablets
automatically recognizes the full condition.

Figure 42: Simplified Greeting rule

Performance Tips

Time for executing the OpenL Tablets rules heavily depends on complexity of condition expressions. To improve
performance, use simple or smart decision table types and simplified condition declarations.

To speed up rules execution, put simple conditions before more complicated ones. In the following example,
simple condition is located before a more complicated one.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 38 of 157

Figure 43: Simple condition location

The main benefit of this approach is performance: expected results are found much faster.

OpenL Tablets enables users to create and maintain tests to ensure reliable work of all rules. A business analyst
performs unit and integration tests by creating test tables on rules through OpenL Tablets WebStudio. As a
result, fully working rules are created and ready to be used.

For test tables, to test the rule table performance, a business analyst uses the Benchmark functionality. For
more information on this functionality, see [OpenL Tablets WebStudio User Guide].

Transposed Decision Tables

Sometimes decision tables look more convenient in the transposed format where columns become rows and
rows become columns. For example, an initial and transposed version of decision table resembles the following:

Figure 44: Transposed decision table

OpenL Tablets automatically detects transposed tables and is able to process them correctly.

Representing Values of Different Types

The following sections describe how to present some values – list or range of numbers, dates, logical values – in
OpenL table cells. The following topics are included in this section:

• Representing Arrays

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 39 of 157

• Representing Date Values

• Representing Boolean Values

• Representing Range Types

Representing Arrays

For all tables that have properties of the enum[] type or fields of the array type, arrays can be defined as follows:

• horizontally

• vertically

• as comma separated arrays

The first option is to arrange array values horizontally using multiple subcolumns. The following is an example of
this approach:

Figure 45: Arranging array values horizontally

In this example, the contents of the set variable for the first rule are [1,3,5,7,9], and for the second rule,
[2,4,6,8]. Values are read from left to right.

The second option is to present parameter values vertically as follows:

Figure 46: Arranging array values vertically

In the second case, the boundaries between rules are determined by the height of the leftmost cell. Therefore,
an additional column must be added to the table to specify boundaries between arrays.

In both cases, empty cells are not added to the array.

The third option is to define an array by separating values by a comma. If the value itself contains a comma, it
must be escaped using back slash symbol “\” by putting it before the comma.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 40 of 157

Figure 47: Array values separated by comma

In this example, the array consists of the following values:

• test 1

• test 3, 4

• test 2

Figure 48: Array values separated by comma. The second example

In this example, the array consists of the following values:

• value1

• value2

• value3

Two-dimensional arrays can be used in rules tables, where mixing values and expressions in arrays is allowed. An
example is as follows:

Figure 49: Using two-dimensional arrays in a rules table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 41 of 157

Representing Date Values

To represent date values in table cells, either Excel format or the following format must be used for the text:

'<month>/<date>/<year>

The value must always be preceded with an apostrophe to indicate that it is text. Excel treats these values as
plain text and does not convert to any specific date format.

The following are valid date value examples:

'5/7/1981

'10/20/2002

'10/20/02

OpenL Tablets recognizes all Excel date formats.

Representing Boolean Values

OpenL Tablets supports either Excel Boolean format or the following formats of Boolean values as a text:

• true, yes, y

• false, no, n

OpenL Tablets recognizes the Excel Boolean value, such as native Excel Boolean value TRUE or FALSE. For more
information on Excel Boolean values, see Excel help.

Representing Range Types

In OpenL, the following data types are designed to work with ranges:

• IntRange

• DoubleRange

For more information on these data types used for ranges, see Range Data Types.

Figure 50: Decision table with IntRange

Note: Be careful with using Integer.MAX_VALUE in a decision table. If there is a range with the border

max_number equals to Integer.MAX_VALUE, for example, [100; 2147483647], it is not included to the
range. This is a known limitation.

Using Calculations in Table Cells

OpenL Tablets can perform mathematical calculations involving method input parameters in table cells. For
example, instead of returning a concrete number, a rule can return a result of a calculation involving one of the
input parameters. The calculation result type must match the type of the cell. When editing tables in Excel files,

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 42 of 157

start the text in the cells containing calculations with an apostrophe followed by =, and for the tables in OpenL
Tablets WebStudio, start the text with =, without an apostrophe. Excel treats such values as a plain text.

The following decision table demonstrates calculations in table cells.

Figure 51: Decision table with calculations

The table transforms a twelve hour time format into a twenty four hour time format. The column RET1 contains
two cells that perform calculations with the input parameter ampmHr.

Calculations use regular Java syntax, similar to the one used in conditions and actions.

Note: Excel formulas are not supported by OpenL Tablets. They are used as pre-calculated values.

Referencing Attributes

To address an attribute of an object in a rule, use the following syntaxes:

• <object name>.<attribute name>

Figure 52: Defining an object attribute

• <attribute name> (<object name>)

Figure 53: Defining an object attribute

The following rules apply:

• When a complex object is used as an input parameter in a rule, it is recommended to use a simplified
reference without the input parameter name to address the direct attributes of this object.

• If input parameters do not have objects with the same attributes, the input parameter name can be omitted
in the reference.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 43 of 157

• If a complex object X is used as an input parameter in a rule, and this object has complex object Y as its
attribute, when referencing object Y attributes in a rule, the input parameter name of the object X can be
omitted.

An example of a redundant reference as follows:

Figure 54: A spreadsheet with a redundant reference

A full reference is redundant here and can be omitted as numberOfFamilies is an attribute of the
policyEndorsementForm input paramter. The correct way to use the reference is as follows:

Figure 55: A spreadsheet with correct reference

An example of referencing an attribute of a complex object that is an attribute of a complex object input
parameter is as follows:

Figure 56: A model describing complex objects structure and their attributes

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 44 of 157

Figure 57: A rule that is using reference to the attributes of the nested complex object

In this example, the input parameter in the rule is a complex object Policy, and one of its attributes is a complex
object Plan. The Plan object includes its own attributes where one of them, Coverage, is a complex object as
well.

Part of the rule logic is to check rate basis across all plans and coverages to make sure it is the same across all
policy. To get to the rate basis attribute from the Policy object, go 2 levels down and omit the Policy level as
Policy is already used as an input parameter: Plan (1st level down) > Coverage (2nd level down).

policyNumber, situsState do not have the policy.situsState reference as they are direct attributes of Policy. This
means omitting input parameter reference of the top level.

The same syntax can be used in the array of objects, for example, cars.model or model(cars). The models of all
cars in the received array are returned.

Calling a Table from Another Table

When one table’s results are required for calculation in another table, the first table can be called using ‘=
TableName (<inputParameter1 attribute name>, <inputParameter2 attribute name>,

<inputParameterN attribute name>) where input parameters can be retrieved as follows:

• from the current table

• specifically declared as in the following ChildBenefitRate table example

• calculated using expressions, that is, formulas or by calling other rules

The input parameter attribute type is not specified when calling a nested rule.

In the following example, a nested rule table HeapedCommissionStrategy is called from the
CommissionCalculation smart rule table.

Figure 58: Calling a nested rule table from a rule table

The return value type of the nested rule table must match the return value type of the current rule table.

Sometimes specific values must be sent to the nested table. In this case, input parameter values can be specified
as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 45 of 157

• decalred in the quatation marks “” for String values

• set to true or false for Boolean values

• provided as a number for Double and Integer values

• set to null for empty values

For example, usually the detailed information about children is not included in the insurance policy and so
default values are used to get the rates:

Figure 59: Declaring specific inputs when calling a nested rule table

Using Referents from Return Column Cells

When a condition value from a cell in the Return column must be called, specify the value by using $C<n>
<variable name> in the Return column.

Figure 60: A Decision table with referents inside the Return column

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 46 of 157

Figure 61: Tracing Decision table with referents

Conditions, actions, and result parameters can be accessed from another condition, action, or result using
simplified syntax. The same syntax can be also used for smart rules if external tables are used for condition,
action, or result.

Figure 62: Accessing a condition parameter from a return expression by simplified syntax

Using Rule Names and Rule Numbers in the Return Column

Rule names and numbers can be used in the return expression to find out which rule is executed. $RuleId is an
implicit number of the rule in the rule table. $Rule is used to get the rule name explicitly defined by the Rule
column.

In the following rule example, the second rule row is executed, and rule ID #2 is stored in the priority field of the
return:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 47 of 157

Figure 63: Using $RuleId and $Rule in the rules table

Datatype Table

This section describes datatype tables and includes the following topics:

• Introducing Datatype Tables

• Inheritance in Data Types

• Vocabulary Data Types

Introducing Datatype Tables

A Datatype table defines an OpenL Tablets data structure. A Datatype table is used for the following purposes:

• create a hierarchical data structure combining multiple data elements and their associated data types in
hierarchy

• define the default values

• create vocabulary for data elements

A compound data type defined by Datatype table is called a custom data type. Datatype tables enable users to
create their own data model which is logically suited for usage in a particular business domain.

For more information on creating vocabulary for data elements, see Vocabulary Data Types.

A Datatype table has the following structure:

1. The first row is the header containing the Datatype keyword followed by the name of the data type.

2. Every row, starting with the second one, represents one attribute of the data type.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 48 of 157

The first column contains attribute types, and the second column contains corresponding attribute names.

Note: While there are no special restrictions, usually an attribute type starts with a capital letter and attribute name starts
with a small letter.

3. The third column is optional and defines default values for fields.

Consider the case when a hierarchical logical data structure must be created. The following example of a
Datatype table defines a custom data type called Person. The table represents a structure of the Person data
object and combines Person’s data elements, such as name, social security number, date of birth, gender, and
address.

Figure 64: Datatype table Person

Note that data attribute, or element, address of Person has, by-turn, custom data type Address and consists of
zip code, city, and street attributes.

Figure 65: Datatype table Address

The following example extends the Person data type with default values for specific fields.

Figure 66: Datatype table with default values

The Gender field has the given value Male for all newly created instances if other value is not provided. If a
value is provided, it has a higher priority over the default value and overrides it.

One attribute type can be used for many attribute names if their data elements are the same. For example,
insuredGender and spouseGender attribute names may have Gender attribute type as the same list of values
(Male, Female) is defined for them.

Note for experienced users: Java beans can be used as custom data types in OpenL Tablets. If a Java bean is used, the
package where the Java bean is located must be imported using a configuration table as described in Configuration
Table.

Consider an example of a Datatype table defining a custom data type called Corporation. The following table
represents a structure of the Corporation data object and combines Corporation data elements, such as ID, full

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 49 of 157

name, industry, ownership, and number of employees. If necessary, default values can be defined in the
Datatype table for the fields of complex type when combination of fields exists with default values.

Figure 67: Datatype table containing value _DEFAULT_

FinancialData refers to the FinancialData data type for default values.

Figure 68: Datatype table with defined default values

During execution, the system takes default values from FinancialData data type.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 50 of 157

Figure 69: Datatype table with default values

Note: For array types _DEFAULT_creates an empty array.

Note: It is strongly recommended to leave an empty column right after the third column with default values if such column
is used. Otherwise, in case the data type has 3 or less attributes, errors occur due to transposed tables support in
OpenL Tablets.

Figure 70: Datatype table with comments nearby

Note: A default value can be defined for String fields of the Datatype table by assigning the "" empty string.

For more information on using runtime context properties in Datatype tables, see Runtime Context Properties in
Datatype Tables.

Datatype table output results can be customized the same way as spreadsheets as described in Spreadsheet
Result Output Customization.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 51 of 157

Inheritance in Data Types

In OpenL Tablets, one data type can be inherited from another one.

A new data type that inherits from another one contains all fields defined in the parent data type. If a child data
type defines fields that are already defined in the parent data type, warnings, or errors, if the same field is
declared with different types in the child and the parent data type, are displayed.

To specify inheritance, the following header format is used in the Datatype table:

Datatype <TypeName> extends <ParentTypeName>

Vocabulary Data Types

Vocabulary data types are used to define a list of possible values for a particular data type, that is, to create a
vocabulary for data.

The vocabulary data type is created as follows:

1. The first row is the header.

It starts with the Datatype keyword, followed by the vocabulary data type name. The predefined data type
is in angle brackets based on which the vocabulary data type is created at the end.

2. The second and following rows list values of the vocabulary data type.

The values can be of the indicated predefined data type only.

In the example described in Introducing Datatype Tables, the data type Person has an attribute gender of the
Gender data type which is the following vocabulary data type.

Figure 71: Example of vocabulary datatype table with String parameters

Thus, data of Gender data type can only be Male or Female.

OpenL Tablets checks all data of the vocabulary data type one whether its value is in the defined list of possible
values. If the value is outside of the valid domain, or defined vocabulary, OpenL Tablets displays an appropriate
error. Usage of vocabulary data types provides data integrity and allows users to avoid accidental mistakes in
rules.

Data Table

A data table contains relational data that can be referenced by its table name from other OpenL Tablets tables
or Java code as an array of data.

Data tables are widely used during testing rules process when a user defines all input test data in data tables and
reuses them in several test tables of a project by referencing the data table from test tables. As a result,
different tests use the same data tables to define input parameter values, for example, to avoid duplicating data.

Data tables can contain data types supported by OpenL Tablets or types loaded in OpenL Tablets from other
sources. For more information on data types, see Datatype Table and Working with Data Types.

The following topics are included in this section:

• Using Simple Data Tables

• Using Advanced Data Tables

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 52 of 157

• Specifying Data in Data Tables with List and Map Fields

• Specifying Data for Aggregated Objects

• Ensuring Data Integrity

Using Simple Data Tables

Simple data tables define a list of values of data types that have a simple structure.

1. The first row is the header of the following format:

Data <data type> <data table name>

where data type is a type of data the table contains, it can be any predefined or vocabulary data type. For
more information on predefined and vocabulary data types, refer to Working with Data Types and Datatype
Table.

2. The second row is a keyword this.

3. The third row is a descriptive table name intended for business users.

4. In the fourth and following rows, values of data are provided.

An example of a data table containing an array of numbers is as follows.

Figure 72: Simple data table

Using Advanced Data Tables

Advanced data tables are used for storing information of a complex structure, such as custom data types and
arrays. For more information on data types, see Datatype Table.

1. The first row of an advanced data table contains text in the following format:
Data <data type> <data table name>

2. Each cell in the second row contains an attribute name of the data type.

For an array of objects, the [i] syntax can be used to define an array of simple datatypes, and [i].
<attributeName> to define an array of custom datatypes.

3. The third row contains attribute display names.

4. Each row starting from the fourth one contains values for specific data rows.

The following diagram displays a datatype table and a corresponding data table with concrete values below it.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 53 of 157

Figure 73: Datatype table and a corresponding data table

Note: There can be blank cells left in data rows of the table. In this case, OpenL Tablets considers such data as non-
existent for the row and does not initialize any value for it, that is, there will be a null value for attributes or even
null for the array of values if all corresponding cells for them are left blank.

There might be a situation when a user needs a Data table column with unique values, while other columns
contain values that are not unique. In this case, add a column with the predefined _PK_ attribute name, standing
for the primary key. It is called an explicit definition of the primary key.

Figure 74: A Data table with unique _PK_ column

If the _PK_ column is not defined, the first column of the table is used as a primary key. This is called an implicit
definition of the primary key.

Figure 75: Referring from one Data table to another using a primary key

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 54 of 157

A user can call any value from a data table using the following syntax:

<datatable name>[<number of row>] Example: testcars[0]

<datatable name>["<value of PK>"] Example: testcars["BMW 35"]

Specifying Data in Data Tables with List and Map Fields

A list represents an ordered sequence of objects. Unlike array, a list can contain elements of any type.

A map is a collection of key-value pairs. Each element of the map always has two values, a key and a value.

To define data table for lists and maps, use the following syntax:

• for lists, [i]:<element datatype>

[i] is order number

• for maps, [“key”]:<element datatype>

If a datatype table field is a list or a map, use the following syntax:

• for lists, <attribute name>[i]:<element datatype>

• for maps, <attribute name>[“key”]:<element datatype>

An example of the data table with a list of values used for zip codes is as follows:

Figure 76: Data table using a list field defined in the datatype table

Values of the list type can also be defined as a comma-separated list.

An example of the datatype table for this data table is as follows:

Figure 77: Datatype table with a list field

An example of the data table with a map of values used for zip codes is as follows:

Figure 78: Data table for the Map data type containing an aggregated object

An example of the datatype table for this table is as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 55 of 157

Figure 79: A datatype table for the address custom data type

Specifying Data for Aggregated Objects

Assume that the data, which values are to be specified and stored in a data table, is an object of a complex
structure with an attribute that is another complex object. The object that includes another object is called an
aggregated object. To specify an attribute of an aggregated object in a data table, the following name chain
format must be used in the row containing data table attribute names:

<attribute name of aggregated object>.<attribute name of object>

To illustrate this approach, assume there are two data types, ZipCode and Address, defined:

Figure 80: Complex data types defined by Datatype tables

In the data type structure, the Address data type contains a reference to the ZipCode data type as its attribute
zip. An example of a data table that specifies values for both data types at the same time is as follows.

Figure 81: Specifying values for aggregated objects

In the preceding example, columns Zip1 and Zip2 contain values for the ZipCode data type referenced by the
Address aggregated data type.

Note: The attribute name chain can be of any arbitrary depth, for example, account.person.address.street.

If a data table must store information for an array of objects, OpenL Tablets allows defining attribute values for
each element of an array.

The first option is to use the following format in the row of data table attribute names:

<attribute name of aggregated object>[i].<attribute name of object>

where i – sequence number of an element, starts from 0.

The following example illustrates this approach.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 56 of 157

Figure 82: Specifying values for an array of aggregated objects using the flatten structure

The first policy, Policy1, contains two vehicles: Honda Odyssey and Ford C-Max; the second policy, Policy2,
contains the only vehicle Toyota Camry; the third policy, Policy3, contains two vehicles: VW Bug and Mazda 3.

Note: The approach is valid for simple cases with an array of simple data type values, and for complex cases with a nested
array of an array, for example, policy.vehicles[0].coverages[2].limit.

The second option is to leave the format as is, omitting the [] syntax in column definition
 <attribute name of aggregated object>.<attribute name of object>,
and define elements of an array in several rows, or in several columns in case of a transposed table.

Figure 83: Specifying values for an array of aggregated objects using the matrix structure

The following rules and limitations apply:

• The cells of the first column, or aggregated object or test case keys, must be merged with all lines of the
same aggregated object or test case.

A primary key column can be defined if data columns cannot be used for this purpose, for example, for
complicated cases with duplicates.

• The cells of the first column holding array of objects data, or array element keys, must be merged to all lines
related to the same element, or have the same value in all lines of the element, or have the first value
provided and other left blank thus indicating duplication of the previous value.

A primary key column can be defined, for example, policy.vehicles._PK_, if data columns cannot be used
for this purpose. Thus, the primary key cannot be left empty.

• In non-keys columns where only one value is expected to be entered, the value is retrieved from the first
line of the test case and all other lines are ignored.

Even if these following lines are filled with values, no equality verification is performed.

• Primary key columns must be put right before the corresponding object data.

In particular, all primary keys cannot be defined in the very beginning of the table.

Note: All mentioned formats of specifying data for aggregated objects are applicable to the input values or expected result
values definition in the Test and Run tables.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 57 of 157

Ensuring Data Integrity

If a data table contains values defined in another data table, it is important to specify this relationship. The
relationship between two data tables is defined using foreign keys, a concept that is used in database
management systems. Reference to another data table must be specified in an additional row below the row
where attribute names are entered. The following format must be used:

> <referenced data table name> <column name of the referenced data table>

In the following example, the cities data table contains values from the states table. To ensure that correct
values are entered, a reference to the code column in the states table is defined.

Figure 84: Defining a reference to another data table

If an invalid state abbreviation is entered in the cities table, OpenL Tablets reports an error.

The target column definition is not required if it is the first column or _PK_ column in the referenced data table.
For example, if a reference is made to the name column in the states table, the following simplified reference
can be used:

>states

If a data table contains values defined as a part of another data table, the following format can be used:

> <referenced data table name>.<attribute name> <column name>

The difference from the previous format is that an attribute name of the referenced data table, which
corresponding values are included in the other data table, is specified additionally.

If <column name> is omitted, the reference by default is constructed using the first column or _PK_ column of
the referenced data table.

In the following diagram, the claims data table contains values defined in the policies table and related to the
vehicle attribute. A reference to the name column of the policies table is omitted as this is the first column in
the table.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 58 of 157

Figure 85: Defining a reference to another data table

Note: To ensure that correct values are provided, cell data validation lists can be used in Excel, thus limiting the range of
values that can be entered.

Note: The same syntax of data integration is applicable to the input values or expected result values definition in the Test
and Run tables.

Note: The attribute path can be of any arbitrary depth, for example, >policies.coverage.limit.

If the array is stored in the field object of the data table, array elements can be referred. An example is as
follows.

Figure 86: Referring array elements in a test table

Test Table

This section describes test tables and context variables available in these tables. The following topics are
included:

• Understanding Test Tables

• Context Variables Available in Test Tables

• Creating a Test Table for a Spreadsheet or Decision Table with SpreadsheetResult as Input Parameter

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 59 of 157

Understanding Test Tables

A test table is used to perform unit and integration tests on executable rule tables, such as decision tables,
spreadsheet tables, and method tables. It calls a particular table, provides test input values, and checks whether
the returned value matches the expected value.

For example, in the following diagram, the table on the left is a decision table but the table on the right is a unit
test table that tests data of the decision table.

Figure 87: Decision table and its unit test table

A test table has the following structure:

1. The first row is the table header, which has the following format:
Test <rule table name> <test table name>

Test is a keyword that identifies a test table. The second parameter is the name of the rule table to be
tested. The third parameter is the name of the test table and is optional.

2. The second row provides a separate cell for each input parameter of the rule table followed by the _res_
column, which typically contains the expected test result values.

3. The third row contains display values intended for business users.

4. Starting with the fourth row, each row is an individual test case.

For more information on how to specify values of input parameters and expected test results of complex
constructions, see Specifying Data for Aggregated Objects and Ensuring Data Integrity.

If a test table field is a list or a map, it can be used to create a data table or test table in the same way as for data
tables as described in Specifying Data in Data Tables with List and Map Fields.

Note for experienced users: Test tables can be used to execute any Java method. In this case, a method table must be
used as a proxy.

When a test table is called, the OpenL Tablets engine calls the specified rule table for every row in the test table
and passes the corresponding input parameters to it.

If there are several rule tables with a different number of parameters and a test table is applicable to both rule
tables, the test table is matched with the rule table which list of test input parameters matches exactly the list of
rules input parameters in the test table. If there are extra parameters in both rule tables, or input parameters of
multiple rule tables match test input parameters exactly, the Method is ambiguous message is displayed.

Application runtime context values are defined in the runtime environment. Test tables for a table, overloaded
by business dimension properties, must provide values for the runtime context significant for the tested table.
Runtime context values are accessed in the test table through the _context_ prefix. An example of a test table
with the context value Lob follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 60 of 157

Figure 88: An example of a test table with a context value

For a full list of runtime context variables available, their description, and related Business Dimension versioning
properties, see Context Variables Available in Test Tables.

Tests are numbered automatically. In addition to that, ID (_id_) can be assigned to the test table thus enabling a
user to use it for running specific test tables by their IDs as described in the Defining the ID Column for Test
Cases section in [OpenL Tablets WebStudio User Guide].

The _description_ column can be used for entering useful information.

The _error_ column of the test table can be used for a test algorithm where the error function is used. The
OpenL Tablets Engine compares an error message to the value of the _error_ column to decide if test is passed.

Figure 89: An example of a test table with an expected error column

If OpenL Tablets projects are accessed and modified through OpenL Tablets WebStudio, UI provides convenient
utilities for running tests and viewing test results. For more information on using OpenL Tablets WebStudio, see
[OpenL Tablets WebStudio User Guide].

Context Variables Available in Test Tables

The following runtime context variables are used in OpenL Tablets and their values can be specified in OpenL
test tables using syntax _context_.<context name> in a column header:

Context variables of OpenL Tablets

Context Context
name used
in rule tables

Type Related versioning
properties

Property names
used in rule tables

Description

Current
Date

currentDate Date Effective / Expiration
dates

effectiveDate,
expirationDate

Date on which the rule is
performed. It is not equal to
today’s date.

Request
Date

requestDate Date Start / End Request
dates

startRequestDate,
endRequestDate

Date when the rule is applied.

Line of
Business

lob String LOB (Line of
Business)

lob Line of business for which the rule
is applied.

US State usState Enum US States state US state where the rule is applied.

Country country Enum Countries country Country where the rule is applied.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 61 of 157

Context variables of OpenL Tablets

Context Context
name used
in rule tables

Type Related versioning
properties

Property names
used in rule tables

Description

US Region usRegion Enum US Region usregion US region where the rule is
applied.

Currency currency Enum Currency currency Currency with which the rule is
applied.

Language lang Enum Language lang Language in which the rule is
applied.

Region region Enum Region region Economic region where the rule is
applied.

Canada
Province

caProvince Enum Canada Province caProvinces Canada province of operation
where the rule is applied.

Canada
Region

caRegion Enum Canada Region caRegions Canada region of operation where
the rule is applied.

Nature nature String Nature nature User-defined business meaning
value to which the rule is applied.

For more information on how property values relate to runtime context values and what rule table is executed,
see Business Dimension Properties and Rules Runtime Context.

Creating a Test Table for a Spreadsheet or Decision Table with SpreadsheetResult as Input
Parameter

To create a test table for a spreadsheet or decision table that has another SpreadsheetResult as an input
parameter, define the test table input as follows:

<Input_name>.$<column_name>$<row_name>

<Input_name> is the name of the input parameter. Spreadsheetresult, column_name, and row_name are
names from the spreadsheet table used as input for a table to be tested.

Consider the following spreadsheet table.

Figure 90: Sample spreadsheet table

There is also one more spreadsheet table that uses fields from the first spreadsheet table.

Figure 91: Another spreadsheet table referencing fields of the first spreadsheet table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 62 of 157

The following syntax is used to define the bankRatings value from SpreadsheetResult BankRatingCalculation as
input for the test table.

Figure 92: A test table for a spreadsheet table with SpreadsheetResult as input parameter

Run Table

A run table calls a particular rule table multiple times and provides input values for each individual call.
Therefore, run tables are similar to test tables, except they do not perform a check of values returned by the
called method.

Note for experienced users: Run tables can be used to execute any Java method.

An example of a run method table is as follows.

Figure 93: Run table

This example assumes there is a rule append defined with two input parameters, firstWord and secondWord.
The run table calls this rule three times with three different sets of input values.

A run table has the following structure:

1. The first row is a table header, which has the following format:
Run <name of rule table to call> <run table name>

The run table name is optional.

2. The second row contains cells with rule input parameter names.

3. The third row contains display values intended for business users.

4. Starting with the fourth row, each row is a set of input parameters to be passed to the called rule table.

For more information on how to specify values of input parameters which have complex constructions, see
Specifying Data for Aggregated Objects and Ensuring Data Integrity.

Method Table

A method table is a Java method described within a table. An example of a method table is as follows:

Figure 94: Method table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 63 of 157

The first row is a table header, which has the following format:

<keyword> <return type> <table name> (<input parameters>)

where <keyword> is either Method or Code.

The second row and the following rows are the actual code to be executed. They can reference parameters
passed to the method and all Java objects and tables visible to the OpenL Tablets engine. Code rows may not
contain the <return> keyword. In this case, the last row of the table is returned as the table result.

This table type is intended for users experienced in programming in developing rules of any logic and
complexity.

Configuration Table

This section describes the structure of the configuration table and includes the following topics:

• Configuration Table Description

• Defining Dependencies between Modules in the Configuration Table

Configuration Table Description

OpenL Tablets allows splitting business logic into multiple Excel files, or modules. There are cases when rule
tables of one module need to call rule tables placed in another module. A configuration table is used to indicate
module dependency.

Another common purpose of a configuration table is when OpenL Tablets rules need to use objects and methods
defined in the Java environment. To enable use of Java objects and methods in Excel tables, the module must
have a configuration table. A configuration table provides information to the OpenL Tablets engine about
available Java packages.

A configuration table is identified by the keyword Environment in the first row. No additional parameters are
required. Starting with the second row, a configuration table must have two columns. The first column contains
commands, and the second column contains input strings for commands.

The following commands are supported in configuration tables:

Configuration table commands

Command Description

dependency Adds a dependency module by its name. All data from that module becomes accessible in the current
module. A dependency module can be located in the current project or its dependency projects. In
simple words, this is how modules, often represented by Excel files, ‘communicate’ with each other if
tables are split into different modules.

import Imports the specified Java package, class, or library so that its objects and methods can be used in
tables.

language Provides language import functionality.

extension Expands OpenL Tablets capabilities with external set of rules. After adding, external rules are
complied with OpenL Tablets rules and work jointly.

For more information on dependency and import configurations, see Project and Module Dependencies.

Defining Dependencies between Modules in the Configuration Table

Often several or even all modules in the project have the same symbols in the beginning of their name. In such
case, there are several options how to list several dependency modules in the Environment table:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 64 of 157

• adding each dependency module by its name

• adding a link to all dependency modules using the common part of their names and the asterisk * symbol for
the varying part

• adding a link to several dependency modules using the question mark ? symbol to replace one symbol
anywhere in the name

All modules that have any letter or number at the position of the question mark symbol will be added as
dependency.

The second option, that is, using the asterisk symbol after the common part of names, is considered a good
practice because of the following reasons:

• Any new version of dependency module is not omitted in future and requires no changes to the
configuration table.

• The configuration table looks simpler.

Figure 95: Configuration table with dependency modules added by their name

Figure 96: Configuration table with link to all dependency modules

Note: When using the asterisk * symbol, if the name of the module where dependency is defined matches the pattern, this
module is automatically excluded from dependent modules to avoid circular dependencies.

The following example illustrates how displaying dependency modules in the configuration table impacts
resulting values calculation. The following modules are defined in the project for an auto insurance policy:

• Auto-Rating Algorithm.xlsx

• Auto-Rating-Domain Model.xlsx

• Auto-Rating-FL-01012016.xlsx

• Auto-Rating-OK-01012016.xlsx

• Auto-Rating Test Data.xlsx

The purpose of this project is to calculate the Vehicle premium. The main algorithm is located in the Auto-
Rating Algorithm.xlsx Excel file.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 65 of 157

Figure 97: Rule with the algorithm to calculate the Vehicle premium

This file also contains the configuration table with the following dependency modules:

Dependency modules defined in the configuration table

Module Description

Auto-Rating-Domain Model.xlsx Contains the domain model.

Auto-Rating-FL-01012016.xlsx Contains rules with the FL state specific values used in the premium calculation.

Auto-Rating-OK-01012016.xlsx Contains rules with the OK state specific values.

All these modules have a common part at the beginning of the name, Auto-Rating-.

The configuration table can be defined with a link to all these modules as follows:

Figure 98: Configuration table in the Auto-Rating Algorithm.xlsx file

Note: The dash symbol - added to the dependency modules names in a common part helps to prevent inclusion of
dependency on Auto-Rating Algorithm itself.

Properties Table

A properties table is used to define the module and category level properties inherited by tables. The properties
table has the following structure:

Properties table elements

Element Description

Properties Reserved word that defines the type of the table. It can be followed by a Java identifier. In this case, the
properties table value becomes accessible in rules as a field of such name and of the TableProperties type.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 66 of 157

Properties table elements

Element Description

scope Identifies levels on which the property inheritance is defined. Available values are as follows:

Scope level Description

Module Identifies properties defined for the whole module and inherited by all tables in it.
There can be only one table with the Module scope in one module.

Figure 99: A properties table with the Module level scope

Category Identifies properties applied to all tables where the category name equals the name
specified in the category element. By default, a category name equals to the
worksheet name.

Figure 100: A properties table with the Category level scope

category Defines the category if the scope element is set to Category. If no value is specified, the category name is
retrieved from the sheet name.

Module Identifies that properties can be overridden and inherited on the module level.

Spreadsheet Table

In OpenL Tablets, a spreadsheet table is an analogue of the Excel table with rows, columns, formulas, and
calculations as contents even though none of Excel formulas are used in OpenL Tables. Spreadsheets can also
call decision tables or other executable tables to make decisions on values, and based on those, make
calculations.

The format of the spreadsheet table header is as follows:

Spreadsheet SpreadsheetResult <table name> (<input parameters>)

or

Spreadsheet <return type> <table name> (<input parameters>)

The following table describes the spreadsheet table header syntax:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 67 of 157

Spreadsheet table header syntax

Element Description

Spreadsheet Reserved word that defines the type of the table.

SpreadsheetResult Type of the return value. SpreadsheetResult returns the calculated content of the whole table.

<return type> Data type of the returned value. If only a single value is required, its type must be defined here
as a return data type and calculated in the row or column named RETURN, or in the last row or
column if the RETURN keyword is not defined.

<table name> Valid name of the table as for any executable table.

<input parameters> Input parameters as for any executable table.

The first column and row of a spreadsheet table, after the header, make the table column and row names.
Values in other cells are the table values. An example is as follows.

Figure 101: Spreadsheet table organization

It is common practice to create a spreadsheet table with two columns only: Step where business step names are
specified, and Formula containing action description. A spreadsheet table cell can contain:

• simple values, such as a string or numeric values

• values of other data types

• formulas, which can be mathematical expressions, rule calls, and other operators or functions

Formulas are preceded by an apostrophe followed by = if editing a table in Excel, or directly with = if editing
a table in OpenL Tablets WebStudio.

• another cell value or a range of another cell values referenced in a cell formula

The following table describes how a cell value can be referenced in a spreadsheet table.

Referencing another cell

Cell name Reference Description

$columnName By column name. Used to refer to the value of another column in the same row.

$rowName By row name. Used to refer to the value of another row in the same column.

$columnName$rowName Full reference. Used to refer to the value of another row and column.

For more information on how to specify a range of cells, see Using Ranges in Spreadsheet Table. Below is an
example of a spreadsheet table with different calculations for an auto insurance policy. Table cells contain
simple values, formulas, references to the value of another cell, and other information.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 68 of 157

Figure 102: Spreadsheet table with calculations as content

The data type for each cell can be determined by OpenL Tablets automatically or it can be defined explicitly for
each row or column. The data type for a whole row or column can be specified using the following syntax:

<column name or row name> : <data type>

Note: If both column and row of the cell have a data type specified, the data type of the column is taken.

In OpenL Tablets Rule Services, spreadsheet output can be customized by adding or removing rows and columns
to display as described in [OpenL Tablets Rule Services Usage and Customization Guide], the Spreadsheet
Result Output Customization section.

The following topics are included in this section:

• Parsing a Spreadsheet Table

• Accessing Spreadsheet Result Cells

• Using Ranges in Spreadsheet Table

• Auto Type Discovery Usage

• Custom Spreadsheet Result

• Spreadsheet Result Output Customization

• Testing Spreadsheet Result

Parsing a Spreadsheet Table

OpenL Tablets processes spreadsheet tables in two different ways depending on the return type:

1. A spreadsheet returns the result of SpreadsheetResult data type.

2. A spreadsheet returns the result of any other data type different from SpreadsheetResult.

In the first case, users get the value of SpreadsheetResult type that is an analog of result matrix. All calculated
cells of the spreadsheet table are accessible through this result. The following example displays a spreadsheet
table of this type.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20Rule%20Services%20Usage%20and%20Customization%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 69 of 157

Figure 103: Spreadsheet table returns the SpreadsheetResult datatype

In the second case, the returned result type is a data type as in all other rule tables, so there is no need for
SpreadsheetResult in the rule table header. The value of the last row, or the latest one if there are several
columns, is returned. OpenL Tablets calculates line by line as follows:

Figure 104: Spreadsheet table returning a single value

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 70 of 157

Accessing Spreadsheet Result Cells

A value of the SpreadsheetResult type means that this is actually a table, or matrix, of values which can be of
different types. A cell is defined by its table column and row. Therefore, a value of a particular spreadsheet cell
can be accessed by cell’s column and row names as follows:

<spreadsheet result variable>.$<column name>$<row name>

or

$<column name>$<row name>(<spreadsheet result variable>)

If a spreadsheet has one column only, besides the column holding step names, spreadsheet cells can be
referenced by row names. If there is one row and multiple columns, a cell can be referenced by the column
name.

Figure 105: Referencing a cell by a row name

The same functionality is available in test tables as described in Testing Spreadsheet Result.

The spreadsheet cell can also be accessed using the getFieldValue(String <cell name>) function, for
instance, (Double) $FinancialRatingCalculation.getFieldValue ("$Value$FinancialRating"). This is a
more complicated option.

Note: If the cell name in columns or rows contains forbidden symbols, such as space or percentage, the cell cannot be
accessed. For more information on symbols that are not allowed, see Java method documentation.

Using Ranges in Spreadsheet Table

The following syntax is used to specify a range in a spreadsheet table:

$FirstValue:$LastValue

An example of using a range this way in the TotalAmount column is as follows.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 71 of 157

 Figure 106: Using ranges of Spreadsheet table in functions

Note: In expressions, such as min/max($FirstValue:$LastValue), there must be no space before and after the colon
(:) operator.

Note: It is impossible to make math operations under ranges which names are specified with spaces. Please use step names
without spaces.

Auto Type Discovery Usage

OpenL Tablets determines the cell data type automatically without its definition for a row or column. A user can
turn on or off this behavior using the autotype property. If any row or column contains explicit data type
definition, it supersedes automatically determined data type. The following example demonstrates that any data
type can be correctly determined in auto mode. A user can put the mouse cursor over the “=” symbol to check
the type of the cell value in OpenL Tablets WebStudio.

Figure 107: Auto Type Discovery Property Usage inside Spreadsheet table

The SpreadsheetResult cell type is automatically determined if a user refers to it from another table according to
the following logic:

1. Search for a cell with the same name is performed through all spreadsheets, and its type is set for the
current cell.

2. If several spreadsheets have cells with the same name but different types, the nearest common type is set
for the current cell.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 72 of 157

Recommendation: To ensure the system identifies types correctly, within the project, use data of the same type
in the steps with the same name.

This logic also works when a user explicitly defines the type of the value as common SpreadsheetResult, for
instance, in the following input parameter definition:

Figure 108: Defining the value type as SpreadsheetResult

However, there are several limitations of auto type discovering when the system cannot possibly determine the
cell data type:

• Type identification algorithm is not able to properly identify the cell type when a cell refers to another cell
with the same name because of occurred circular dependencies.

Figure 109: Limitation for referring to another cell with the same name

• A user explicitly defines the return type of other Rules tables, such as Decision tables, as common
SpreadsheetResult as follows:

Figure 110: Explicitly defining the return type of other rules tables

The type of undefined cells must be explicitly defined as a custom spreadsheet result type or any other
suitable type to avoid uncertain Object typing.

• There is a circular dependency in a spreadsheet table calling the same spreadsheet rule itself in a cell. This
cell type must be explicitly defined to allow correct auto type discovering of the whole spreadsheet table as
follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 73 of 157

Figure 111: Defining a cell type explicitly

Custom Spreadsheet Result

Usage of spreadsheet tables that return the SpreadsheetResult type is improved by having a separate type for
each such spreadsheet table, that is, custom SpreadsheetResult data type, which is determined as follows:

SpreadsheetResult<Spreadsheet table name>

Custom SpreadsheetResult data type is automatically generated by a system and substitutes common
SpreadsheetResult type. This provides the following advantages:

• The system understands the structure of the spreadsheet result, that is, knows names of columns and rows,
and data types of cell values.

In other words, there is no need to indicate a data type when accessing the cell.

• Test spreadsheet cell can be of any complex type.

For more information on test spreadsheet result, see Testing Spreadsheet Result.

To understand how this works, consider the following spreadsheet.

Figure 112: An example of a spreadsheet

The return type is SpreadsheetResult, but it becomes SpreadsheetResultCoveragePremium data type. Now it is
possible to access any calculated cell in a very simplified way without indicating its data type, for example, as
displayed in the following figure.

Figure 113: Calling Spreadsheet cell

In this example, the spreadsheet table cell is accessed from the returned custom spreadsheet result.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 74 of 157

There is no need to specify a custom SpreadsheetResult data type in the header of the spreadsheet table itself.
The return data type is still SpreadsheetResult. Only when passing such spreadsheet as input to another table,
the full name must be declared. For example, if the CoveragePremium spreadsheet is an input parameter for the
FinalPremium spreadsheet, SpreadsheetResultCoveragePremium CoveragePremium must be included in the list
of inputs.

Spreadsheet Result Output Customization

To simplify integration with OpenL rules, customize serialization output of SpreadsheetResult objects by adding
or removing steps or columns from spreadsheet result output.

To identify steps or columns to be returned in the SOAP/REST response, mark them using the * asterisk symbol.

To ensure that certain steps or columns are not included in output, mark them with the ~ tilde symbol.

Consider the following spreadsheet.

Figure 114: Spreadsheet example

For this spreadsheet, output result is as follows.

{

 “vehiclesPremium”: [

 1,

 3,

 4

],

 “driversPremium”: [

 1,

 3,

 4

],

 “clientDiscount”: 5,

 “vehiclesScore”: 8,

 “driversScore”: 8,

 “premium”: 21

}

In the following example, some steps are marked with the asterisk as mandatory.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 75 of 157

Figure 115: Example of a spreadsheet with mandatory steps

An output for this table is as follows:

{

 “vehiclesScore”: 8,

 “driversScore”: 8,

 “premium”: 21

}

An example of the spreadsheet with steps marked not to be included in output is as follows.

Figure 116: An example of a spreadsheet with steps marked to exclude

An output result for this spreadsheet is as follows.

{

 “vehiclesPremium”: [

 1,

 3,

 4

],

 “driversPremium”: [

 1,

 3,

 4

],

 “premium”: 21

}

Note: If the Maven plugin is used for generating a spreadsheet result output model, system integration can be based on
generated classes. A default Java package for generated Java beans for particular spreadsheet tables is set using the
spreadsheetResultPackage table property. Nevertheless, it is recommended to avoid any integration based on
generated classes.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 76 of 157

Testing Spreadsheet Result

Cells of a spreadsheet result, which is returned by the rule table, can be tested as displayed in the following
spreadsheet table.

Figure 117: A sample spreadsheet table

Simplified syntax is used to pull results from a spreadsheet table if a spreadsheet table contains only one column
besides the row name column: _res_.$<row name>.

Figure 118: Test for the sample spreadsheet table

Columns marked with the grey color determine income values, and columns marked with yellow determine the
expected values for a specific number of cells. It is possible to test as many cells as needed.

The result of running this test in OpenL Tablets WebStudio is provided in the following output table.

Figure 119: The sample spreadsheet test results

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 77 of 157

It is possible to test cells of the resulting spreadsheet which contain values of complex types, such as:

• array of values

• custom data type with several attributes

• other spreadsheets nested in the current one

For this purpose, the same syntax described in Specifying Data for Aggregated Objects can be used. It also
includes simplified options.

res.$<column name>$<row name>[i]

res.$<column name>$<row name>.<attribute name>

res.$<column of Main Spreadsheet>$<row of Main Spreadsheet>.$<column of Nested

Spreadsheet>$<row of Nested Spreadsheet>

res.$<column of Main Spreadsheet>$<row of Main Spreadsheet>[i].$<column of Nested

Spreadsheet>$<row of Nested Spreadsheet>

where i – sequence number of an element, starts from 0.

Consider an advanced example provided in the following figure. The PolicyCalculation spreadsheet table
performs lots of calculations regarding an insurance policy, including specific calculations for vehicles and a main
driver of the policy. In order to evaluate vehicle and drivers, for example, calculate their score and premium, the
VehicleCalculation and DriverCalculation spreadsheet tables are invoked in cells of the PolicyCalculation rule
table.

Figure 120: Example of the PolicyCalculation spreadsheet table

Figure 121: Example of the VehicleCalculation spreadsheet table

Figure 122: The advanced sample spreadsheet table

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 78 of 157

The structure of the resulting PolicyCalculation spreadsheet is rather complex. Any cell of the result can be
tested as illustrated in the PolicyCalculationTest test table.

Figure 123: Test for the advanced sample spreadsheet table

To test a spreadsheet that returns a single value, use the same logic as for decision tables.

TBasic Table

A TBasic table is used for code development in a more convenient and structured way rather than using Java or
Business User Language (BUL). It has several clearly defined structural components. Using Excel cells, fonts, and
named code column segments provides clearer definition of complex algorithms.

Important: As this table type is Java code related, TBasic table must not be used unless there is a critical need
for it and no other table type can represent the logic in a simpler way more comprehensive for business users.

In a definite UI, it can be used as a workflow component.

The format of the TBasic table header is as follows:

TBasic <ReturnType> <TechnicalName> (ARGUMENTS)

The following table describes the TBasic table header syntax:

Tbasic table header syntax

Element Description

TBasic Reserved word that defines the type of the table.

ReturnType Type of the return value.

TechnicalName Algorithm name.

ARGUMENTS Input arguments as for any executable table.

The following table explains the recommended parts of the structured algorithm:

Algorithm parts

Element Description

Algorithm precondition or preprocessing Executed when the component starts execution.

Algorithm steps Represents the main logic of the component.

Postprocess Identifies a part executed when the algorithm part is executed.

User functions and subroutines Contains user functions definition and subroutines.

Column Match Table

A column match table has an attached algorithm. The algorithm denotes the table content and how the return
value is calculated. Usually, this type of table is referred to as a decision tree.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 79 of 157

The format of the column match table header is as follows:

ColumnMatch <ALGORITHM> <return type> <table name> (<input parameters>)

The following table describes the column match table header syntax:

Column match table header syntax

Element Description

ColumnMatch Reserved word that defines the type of the table.

<ALGORITHM> Name of the algorithm. This value is optional.

<return type> Type of the return value.

<table name> Valid name of the table.

<input parameters> Input parameters as for any executable table.

The following predefined algorithms are available:

Predefined algorithms

Element Reference

MATCH MATCH Algorithm

SCORE SCORE Algorithm

WEIGHTED WEIGHTED Algorithm

Each algorithm has the following mandatory columns:

Algorithm mandatory columns

Column Description

Names Names refer to the table or method arguments and bind an argument to a particular row. The same
argument can be referred in multiple rows.

Arguments are referenced by their short names. For example, if an argument in a table is a Java bean with
the some property, it is enough to specify some in the names column.

Operations The operations column defines how to match or check arguments to values in a table. The following
operations are available:

Operation Checks for Description

match equality or belonging to a
range

The argument value must be equal to or within a range of
check values.

min minimally required value The argument must not be less than the check value.

max maximally allowed value The argument must not be greater than the check value.

The min and max operations work with numeric and date types only.

The min and max operations can be replaced with the match operation and ranges. This approach adds
more flexibility because it enables verifying all cases within one row.

Values The values column typically has multiple sub columns containing table values.

The following topics are included in this section:

• MATCH Algorithm

• SCORE Algorithm

• WEIGHTED Algorithm

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 80 of 157

MATCH Algorithm

The MATCH algorithm allows mapping a set of conditions to a single return value.

Besides the mandatory columns, such as names, operations, and values, the MATCH table expects that the first
data row contains Return Values, one of which is returned as a result of the ColumnMatch table execution.

Figure 124: An example of the MATCH algorithm table

The MATCH algorithm works from top to bottom and left to right. It takes an argument from the upper row and
matches it against check values from left to right. If they match, the algorithm returns the corresponding return
value, which is the one in the same column as the check value. If values do not match, the algorithm switches to
the next row. If no match is found in the whole table, the null object is returned.

If the return type is primitive, such as int, double, or Boolean, a runtime exception is thrown.

The MATCH algorithm supports AND conditions. In this case, it checks whether all arguments from a group
match the corresponding check values and checks values in the same value sub column each time. The AND
group of arguments is created by indenting two or more arguments. The name of the first argument in a group
must be left indented.

SCORE Algorithm

The SCORE algorithm calculates the sum of weighted ratings or scores for all matched cases. The SCORE
algorithm has the following mandatory columns:

• names

• operations

• weight

• values

The algorithm expects that the first row contains Score, which is a list of scores or ratings added to the result
sum if an argument matches the check value in the corresponding sub column.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 81 of 157

Figure 125: An example of the SCORE algorithm table

The SCORE algorithm works up to down and left to right. It takes the argument value in the first row and checks
it against values from left to right until a match is found. When a match is found, the algorithm takes the score
value in the corresponding sub column and multiples it by the weight of that row. The product is added to the
result sum. After that, the next row is checked. The rest of the check values on the same row are ignored after
the first match. The 0 value is returned if no match is found.

The following limitations apply:

• Only one score can be defined for each row.

• AND groups are not supported.

• Any number of rows can refer to the same argument.

• The SCORE algorithm return type is always Integer.

WEIGHTED Algorithm

The WEIGHTED algorithm combines the SCORE and simple MATCH algorithms. The result of the SCORE
algorithm is passed to the MATCH algorithm as an input value. The MATCH algorithm result is returned as the
WEIGHTED algorithm result.

The WEIGHTED algorithm requires the same columns as the SCORE algorithm. Yet it expects that first three rows
are Return Values, Total Score, and Score. Return Values and Total Score represent the MATCH algorithm, and
the Score row is the beginning of the SCORE part.

Figure 126: An example of the WEIGHTED algorithm table

The WEIGHTED algorithm requires the use of an extra method table that joins the SCORE and MATCH algorithm.
Testing the SCORE part can become difficult in this case. Splitting the WEIGHTED table into separate SCORE and
MATCH algorithm tables is recommended.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 82 of 157

Constants Table

A constants table allows defining constants of different non-custom types. These constants can be then used
across the whole project and they do not have to be listed as input parameter in the table header.

An example of a constants table and constants usage is as follows.

Figure 127: Constants table and usage example

In this example, users can create names for some values and use those in rule cells without the “=” symbol.
Constants are used in the body of the table but are not listed in the header as input.

The format of the constants table is as follows:

1. The first row is a table header, which has the following format:

Constants <optional table name>

2. The second row contains cells with a type, name, and value of the constant.

An expression can be used for a constant, for example, 1/3. To define an empty string, use the _DEFAULT_ value.

Table Part

The Table Part functionality enables the user to split a large table into smaller parts, or partial tables. Physically,
in the Excel workbook, the table is represented as several table parts which logically are processed as one rules
table.

This functionality is suitable for cases when a user is dealing with .xls file format using a rules table with more
than 256 columns or 65,536 rows. To create such a rule table, a user can split the table into several parts and
place each part on a separate worksheet.

Splitting can be vertical or horizontal. In vertical case, the first N1 rows of an original rule table are placed in the
first table part, the next N2 rows in the second table part, and so on. In horizontal case, the first N1 columns of
the rule table are placed in the first table part, the next N2 columns in the second table part, and so on. The
header of the original rule table and its properties definition must be copied to each table part in case of
horizontal splitting. Merging of table parts into the rule table is processed as depicted in the following figures.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 83 of 157

Figure 128: Vertical merging of table parts

Figure 129: Horizontal merging of table parts

All table parts must be located within one Excel file.

Splitting can be applied to any tables of decision, data, test and run types.

The format of the TablePart header is as follows:

TablePart <table id> <split type> {M} of {N}

The following table describes the TablePart header syntax:

Table Part header syntax

Element Description

TablePart Reserved word that defines the type of the table.

<table id> Unique name of the rules table. It can be the same as the rules table name if the rules table is
not overloaded by properties.

<split type> Type of splitting. It is set to row for vertical splitting and column for horizontal splitting.

{M} Sequential number of the table part: 1, 2, and so on.

{N} Total number of table parts of the rule table.

The following examples illustrate vertical and horizontal splitting of the RiskOfWorkWithCorporate decision
rule.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 84 of 157

Figure 130: Table Parts example. Vertical splitting part 1

Figure 131: Table Parts example. Vertical splitting part2

Figure 132: Table Part example. Horizontal splitting part 1

Figure 133: Table Parts example. Horizontal splitting part 2

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 85 of 157

3.3 Table Properties
For all OpenL Tablets table types, except for Properties Table, Configuration Table and the Other type tables,
that is, non-OpenL Tablets tables, properties can be defined as containing information about the table. A list of
properties available in OpenL Tablets is predefined, and all values are expected to be of corresponding types.
The exact list of available properties can vary between installations depending on OpenL Tablets configuration.

Table properties are displayed in the section which goes immediately after the table header and before other
table contents. The properties section is optional and can be omitted in the table. The first cell in the properties
row contains the properties keyword and is merged across all cells in column if more than one property is
defined. The number of rows in the properties section is equal to the number of properties defined for the table.
Each row in the properties section contains a pair of a property name and a property value in consecutive cells,
that is, second and third columns.

Figure 134: Table properties example

The following topics are included in this section:

• Category and Module Level Properties

• Default Value

• System Properties

• Properties for a Particular Table Type

• Rule Versioning

• Info Properties

• Dev Properties

• Properties Defined in the File Name

• Properties Defined in the Folder Name

• Keywords Usage in a File Name

Category and Module Level Properties

Table properties can be defined not only for each table separately, but for all tables in a specific category or a
whole module. A separate Properties Table is designed to define this kind of properties. Only properties allowed
to be inherited from the category or module level can be defined in this table. Some properties, such as
description, can only be defined for a table.

Besides the Properties table, the module level properties can also be defined in a name of the Excel file
corresponding to the module. For more information on defining properties in the Excel file name, see Properties
Defined in the File Name.

Properties defined at the category or module level can be overridden in tables. The priority of property values is
as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 86 of 157

1. Table.

2. Category.

3. Module.

4. Default value.

Note: The OpenL Tablets engine allows changing property values via the application code when loading rules.

Default Value

Some properties can have default values. A default value is a predefined value that can be changed only in the
OpenL Tablets configuration. The default value is used if no property value is defined in the rule table or in the
Properties table.

Properties defined by default are not added to the table's properties section and can only be changed in the
Properties pane on the right side of OpenL Tablets WebStudio Rules Editor.

System Properties

System properties can only be set and updated by OpenL Tablets, not by users. OpenL Tablets WebStudio
defines the following system properties:

• Created By

• Created On

• Modified By

• Modified On

For more information on system properties, see [OpenL Tablets WebStudio User Guide].

Properties for a Particular Table Type

Some properties are used just for particular types of tables. It means that they make sense just for tables of a
special type and can be defined only for those tables. Almost all properties can be defined for Decision Tables,
except for the Datatype Package property intended for Datatype Tables, the Scope property used in Properties
Tables, the Auto Type Discovery property used in Spreadsheet Tables, and the Precision property designed for
Test Tables.

OpenL Tablets checks applicability of properties and produces an error if the property value is defined for table
not intended to contain the property.

Applications using OpenL Tablets rules can utilize properties for different purposes. All properties are organized
into the following groups:

Properties group list

Group Description

Business dimension Business Dimension Properties

Version Rule Versioning

Info Info Properties

Dev Dev Properties

Properties of the Business Dimension and Rule Versioning groups are used for rule versioning. They are
described in detail further on in this guide.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 87 of 157

Rule Versioning

In OpenL Tablets, business rules can be versioned in different ways using properties as described in Table
Properties. This section describes the most popular versioning properties:

Versioning properties

Property Description

Business Dimension
Properties

Targets advanced rules usage when several rule sets are used simultaneously. This
versioning mechanism is more extendable and flexible.

Active Table Is more suitable for “what-if” analysis. It allows storing the previous versions of rule
tables in an inactive status in a project to track changes or for any other reference.

Business Dimension Properties

This section introduces the Business Dimension group properties and includes the following topics:

• Introducing Business Dimension Properties

• Using Effective and Expiration Date

• Using a Request Date

• Using an Origin Property

• Overlapping of Properties Values for Versioned Rule Tables

• Rules Runtime Context

• Runtime Context Properties in Datatype Tables

Introducing Business Dimension Properties

The properties of the Business Dimension group are used to version rules by property values. This type of
versioning is typically used when there are rules with the same meaning applied under different conditions. In
their projects, users can have as many rules with the same name as needed; the system selects and applies the
required rule by its properties. For example, calculating employees’ salary for different years can vary by several
coefficients, have slight changes in the formula, or both. In this case using the Business Dimension properties
enables users to apply appropriate rule version and get proper results for every year.

The following table types support versioning by Business Dimension properties:

• Decision tables, including rules, simple rules, smart rules, simple lookups, and smart lookup tables

• Spreadsheet

• TBasic

• Method

• ColumnMatch

Note: Test, Datatype, and Data table types cannot be versioned.

When dealing with almost equal rules of the same structure but with slight differences, for example, with
changes in any specific date or state, there is a very simple way to version rule tables by Business Dimension
properties. Proceed as follows:

1. Take the original rule table and set Business Dimension properties that indicate by which property the rules
must be versioned.

Multiple Business Dimension properties can be set.

2. Copy the original rule table, set new dimension properties for this table, and make changes in the table data
as appropriate.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 88 of 157

3. Repeat steps 1 and 2 if more rule versions are required.

Now the rule can be called by its name from any place in the project or application. If there are multiple rules
with the same name but different Business Dimension properties, OpenL Tablets reviews all rules and selects the
corresponding one according to the specified context variables or, in developers’ language, by runtime context
values.

The following table contains a list of Business Dimension properties used in OpenL Tablets:

Business Dimension properties list

Property Name to be used

in rule tables

Name to be
used in
context

Level at which a
property can be
defined

Type Description

Effective /
Expiration
dates

• effectiveDate

• expirationDate
currentDate Module Category

Table
Date Time interval within which a rule

table is active.

The table becomes active on the
effective date and inactive after
the expiration date. Multiple
instances of the same table can
exist in the same module with
different effective and expiration
date ranges.

Start / End
Request
dates

• startRequestDate

• endRequestDate
requestDate Module Category

Table
Date Time interval within which a rule

table is introduced in the system
and is available for usage.

LOB (Line of
Business)

lob lob Module Category
Table

String[] LOB for a rule table, that is,
business area for which the given
rule works and must be used.

US Region usregion usRegion Module Category
Table

Enum[] US regions for which the table
works and must be used.

Countries country country Module Category
Table

Enum[] Countries for which the table
works and must be used.

Currency currency currency Module Category
Table

Enum[] Currencies for which the table
works and must be used.

Language lang lang Module Category
Table

Enum[] Languages for which this table
works and must be used.

US States state usState Module Category
Table

Enum[] US states for which this table
works and must be used.

Canada
Province

caProvinces caProvince Module Category
Table

Enum[] Canada provinces of operation
for which the table must be
used.

Canada
Region

caRegions caRegion Module Category
Table

Enum[] Canada regions of operation for
which the table must be used.

Region region region Module Category Enum[] Economic regions for which the
table works and must be used.

Origin origin Module Category
Table

Enum Origin of rule to enable hierarchy
of more generic and more
specific rules.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 89 of 157

Business Dimension properties list

Property Name to be used

in rule tables

Name to be
used in
context

Level at which a
property can be
defined

Type Description

Nature nature nature Module Category
Table

String Property of any kind holding
user-defined business meaning.

Note for experienced users: A particular rule can be called directly regardless of its dimension properties and current
runtime context in OpenL Tablets. This feature is supported by setting the ID property as
described in Dev Properties, in a specific rule, and using this ID as the name of the function
to call. During runtime, direct rule is executed avoiding the mechanism of dispatching
between overloaded rules.

For more information on using attributes for runtime context definition, see Runtime Context Properties in
Datatype Tables.

Illustrative and very simple examples of how to use Business Dimension properties are provided further in the
guide on the example of Effective/Expiration Date and Request Date.

Using Effective and Expiration Date

The following Business Dimension properties are intended for versioning business rules depending on specific
dates:

Business Dimension properties for versioning on specific dates

Property Description

Effective Date Date as of which a business rule comes into effect and produces required and expected results.

Expiration Date Date after which the rule is no longer applicable.

If Expiration Date is not defined, the rule works at any time on or after the effective date. If
Expiration Date is not defined and several versions of a rule satisfy the context, a rule with the
newest effective date is applied.

The date for which the rule is to be performed must fall into the effective and expiration date time interval.

Users can have multiple versions of the same rule table in the same module with different effective and
expiration date ranges. However, these dates cannot overlap with each other, that is, if in one version of the
rule effective and expiration dates are 1.2.2010 – 31.10.2010, do not create another version of that rule with
effective and expiration dates within this dates frame if no other property is applied.

Consider a rule for calculating a car insurance premium quote. The rule is completely the same for different time
periods except for a specific coefficient, a Quote Calculation Factor, or Factor. This factor is defined for each
model of car.

The further examples display how these properties define which rule to apply for a particular date.

The following figure displays a business rule for calculating the quote for 2011.The effective date is 1/1/2011
and the expiration date is 12/31/2011.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 90 of 157

Figure 135: Business rule for calculating a car insurance quote for year 2011

However, the rule for calculating the quote for the year 2012 cannot be used because the factors for the cars
differ from the previous year.

The rule names and their structure are the same but with the factor values differ. Therefore, it is a good idea to
use versioning in the rules.

To create the rule for the year 2012, proceed as follows:

1. To copy the rule table, use the Copy as New Business Dimension feature in OpenL Tablets WebStudio as
described in [OpenL Tablets WebStudio User Guide], Copying Tables section.

2. Change effective and expiration dates to 1/1/2012 and 12/31/2012 appropriately.

3. Replace the factors as appropriate for the year 2012.

The new table resembles the following:

Figure 136: Business rule for calculating the same quote for the year 2012

To check how the rules work, test them for a certain car model and particular dates, for example, 5/10/2011 and
11/2/2012. The test result for BMW is as follows:

Figure 137: Selection of the Factor based on Effective / Expiration Dates

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 91 of 157

In this example, the date on which calculation must be performed, per client’s request, is displayed in the
Current Date column. In the first row for BMW, the current date value is 5/10/2011, and since 5/10/2011>=
1/1/2011 and 10/5/2011<= 12/31/2011, the result factor for this date is 20.

In the second row, the current date value is 2/11/2012, and since 2/11/2012 >= 1/1/2012 and 2/11/2012 <=
12/31/2012, the factor is 25.

Using a Request Date

In some cases, it is necessary to define additional time intervals for which user’s business rule is applicable.
Table properties related to dates that can be used for selecting applicable rules have different meaning and
work with slightly different logic compared to the previous ones.

Request properties used for versioning

Property Description

Start Request Date Date when the rule is introduced in the system and is available for usage.

End Request Date Date from which the system stops using the rule.

If not defined, the rule can be used any time on or after the Start Request Date value.

The date when the rule is applied must be within the Start Request Date and End Request Date interval. In
OpenL Tablets rules, this date is defined as a request date.

Note: Pay attention to the difference between the previous two properties: effective and expiration dates identify the date
to which user’s rules are applied. These dates usually bear legal meaning and a user refers to them when a definite
milestone is achieved, for example, when some business logic or regulations are approved, and the company
becomes legally allowed to use it. In contrast, request dates identify when user’s rules are used, or called from the
application.

Users can have multiple rules with different start and end request dates, where dates must intersect. In such
cases, priority rules are applied as follows:

1. The system selects the rule with the latest Start Request date.

Figure 138: Example of the priority rule applied to rules with intersected Start Request date

2. If there are rules with the same Start Request date, OpenL Tablets selects the rule with the earliest End
Request date.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 92 of 157

Figure 139: Example of the priority rule applied to the rules with End Request date

If the start and end request dates coincide completely, the system displays an error message saying that such
table already exists.

Note: A rule table version with exactly the same Start Request Date or End Request Date cannot be created because it
causes an error message.

Note: In particular cases, request date is used to define the date when the business rule was called for the very first time.

Consider the same rule for calculating a car insurance quote but add date properties, Start Request Date and
End Request Date, in addition to the effective and expiration dates.

For some reason, the rule for the year 2012 must be entered into the system in advance, for example, from
12/1/2011. For that purpose, add 12/1/2011 as Start Request Date to the rule as displayed in the following
figure. Adding this property tells OpenL Tablets that the rule is applicable from the specified Start Request date.

Figure 140: The rule for calculating the quote is introduced from 12/1/2011

Assume that a new rule with different factors from 2/3/2012 is introduced as displayed in the following figure.

Figure 141: The rule for calculating the Quote is introduced from2.3.2011

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 93 of 157

However, the US legal regulations require that the same rules for premium calculations must be used; therefore,
users must follow the previous rules for older policies. In this case, storing a request date in the application
helps to solve this issue. By the provided request date, OpenL Tablets will be able to select rules available in the
system on the designated date.

The following figure displays results of testing the rules for BMW for particular request dates and effective
dates.

Figure 142: Selection of the Factor based on Start / End Request Dates

In this example, the dates for which the calculation is performed are displayed in the Current Date column.
Remember that it is not today’s date. The dates when the rule is run and calculation is performed are displayed
in the Request Date column. Request date is the date when the results of the rule call are actually requested.

Pay attention to the row where Request Date is 3/10/2012. This date falls in both start and end Request date
intervals displayed in Figure 140 and Figure 141. However, the Start Request date in Figure 141 is later than the
one defined in the rule in Figure 140. As a result, correct factor value is 35.

Using an Origin Property

The Origin Business Dimension property indicates the origin of rules used to generate a hierarchy of more
generic and more specific rules. This property has two values, Base and Deviation. A rule with the Deviation
property value has higher priority than a rule with the Base value or a rule without property value. A rule with
the Base property value has higher priority than a rule without property value. As a result, selecting the correct
version of the rule table does not require any specific value to be assigned in the runtime context, and the
correct rule table is selected based on the hierarchy.

An example is as follows.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 94 of 157

Figure 143: Example Rule table with origin property

Overlapping of Properties Values for Versioned Rule Tables

By using different sets of Business Dimension properties, a user can flexibly apply versioning to rules, keeping all
rules in the system. OpenL Tablets runs validation to check gaps and overlaps of properties values for versioned
rules.

There are two types of overlaps by Business Dimension properties, “good” and “bad” overlaps. The following
diagram illustrates overlap of properties, representing properties value sets of a versioned rule as circles. For
simplicity, two sets are displayed.

Figure 144: Example of logic for “good” and “bad” overlaps

The No overlap case means that property value sets are totally different and the only one rule table can be
selected according to the specified client request in runtime context. An example is as follows:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 95 of 157

Figure 145: Example of No overlap case

The “Good” overlap case describes the situation when several rule versions can be selected according to the
client request as there are intersections among their sets, but one of the sets completely embeds another one.
In this situation, the rule version with the most detailed properties set, that is, the set completely embedded in
all other sets, is selected for execution.

Note: If a property value is not specified in the table, the property value is all possible values, that is, any value. It also
covers the case when a property is defined but its value is not set, that it, the value field is left empty.

Detailed properties values mean that all these values are mentioned, or included, or implied in properties
values of other tables. Consider the following example.

Figure 146: Example of a rule with “good” overlapping

The first rule table is the most general rule: there are no specified states, so this rule is selected for any client
request. It is the same as if the property state is defined with all states listed in the table. The second rule table
has several states values set, that is, NY, CA, and FL. The last rule version has the most detailed properties set as
it can be selected only if the rule is applied to the California state.

The following diagram illustrates example overlapping.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 96 of 157

Figure 147: Logic of properties set inclusion

For the Delaware state, the only the first rule is applicable, that is, 135$ Accident Premium. If the rule is applied
to the New York state, then the first and second rule versions are suitable by property values, but according to
the “good” overlapping logic, the premium is 145$ because the second rule table is executed. And, finally,
Accident Premium for the California state is 150$ despite the fact that this property is set in all three rule tables:
absence of property state in the first table means the full list of states set.

The “Bad” overlap is when there is no certain result variant. “Bad” overlap means that sets Si and Sj have
intersections but are not embedded. When a “bad” overlap occurs, the system displays the ambiguous error
message.

Consider the following example.

Figure 148: Example of a rule with “bad” overlapping

For the California state, there are two possible versions of the rule, and “good” overlapping logic is not
applicable. Upon running this test case, an error on ambiguous method dispatch is returned.

Note: For the matter of simplicity, only one property, state, is defined in examples of this section. A rule table can have any
number of properties specified which are analyzed on overlapping.

Note: Only properties specified in runtime context are analyzed during execution.

Note: Overlapping functionality is not supported for the Date properties.

Rules Runtime Context

OpenL Tablets supports rules overloading by metadata, or business dimension properties.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 97 of 157

Sometimes a user needs business rules that work differently but have the same input.
Consider provided vehicle insurance and a premium calculation rule defined for it as follows:

PREMIUM = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS

For different US states, there are different bonus calculation policies. In a simple way, for all states there must
be different calculations:

PREMIUM_1 = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_1, for state #1

PREMIUM_2 = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_2, for state #2

...

PREMIUM_N = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS_N, for state #N

OpenL Tablets provides a more elegant solution for this case:

PREMIUM = RISK_PREMIUM + VEHICLE_PREMIUM + DRIVER_PREMIUM - BONUS*, where

BONUS* = BONUS_1, for state #1

BONUS* = BONUS_2, for state #2

...

BONUS* = BONUS_N, for state #N

So a user has one common premium calculation rule and several different rules for bonus calculation. When
running premium calculation rule, provide the current state as an additional input for OpenL Tablets to choose
the appropriate rule. Using this information OpenL Tablets makes decision which bonus method must be
invoked. This kind of information is called runtime data and must be set into runtime context before running the
calculations.

The following OpenL Tablets table snippets illustrate this sample in action.

Figure 149: The group of Decision Tables overloaded by properties

All tables for bonus calculation have the same header but a different state property value.

OpenL Tablets has predefined runtime context which already has several properties.

Runtime Context Properties in Datatype Tables

To simplify runtime context definition, declare it in the Datatype table fields. Mark datatype fields as a context
field to be used later in rule versioning.

Use one of the following formats for runtime context properties:

• <attributeName> : context

It is used when a model datatype name equals the context variable name.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 98 of 157

• <attributeName> : context.<contextVariable>

It is used when a model datatype field name is not equal to the corresponding context variable name.

For more information on the context variable name, see Introducing Business Dimension Properties, the Name
to be used in context column in the Business Dimension properties list table.

Consider the following example.

To vary rules by the date when insurance was applied for, create a dedicated runtime context property for it in
the model or use the existed one if applicable.

Figure 150: RequestDate set as applicationDate in a datatype table

There are two tables describing discount factors, for different request dates.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 99 of 157

Figure 151: SmartRules tables with data for different request dates

In the test table, use the attribute name specified in the Datatype table. To test the provided cases, use the
applicationDate attribute name only.

Figure 152: Test table example

Every time the rule is run, OpenL Tablets consequentially checks the input fields and if a context field is found, it
is updated with the corresponding value.

Active Table

Rule versioning allows storing the previous versions of the same rule table in the same rules file. The active rule
versioning mechanism is based on two properties, version and active. The version property must be different
for each table, and only one of them can have true as a value for the active property.

All rule versions must have the same identity, that is, exactly the same signature and dimensional properties
values. Table types also must be the same.

An example of an inactive rule version is as follows.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 100 of 157

Figure 153: An inactive rule version

Info Properties

The Info group includes properties that provide useful information. This group enables users to easily read and
understand rule tables.

The following table provides a list of Info properties along with their brief description:

Info properties list

Property Name to be
used

in rule tables

Level at which property
can be defined and
overridden

Type Description

Category category Category, Table String Category of the table. By default, it is equal to the
name of the Excel sheet where the table is located.
If the property level is specified as Table, it defines
a category for the current table. It must be
specified if scope is defined as Category in the
Properties table.

Description description Table String Description of a table that clarifies use of the table.

An example is Car price for a particular
Location/Model.

Tags tags Table String[] Tag that can be used for search. The value can
consist of any number of comma-separated tags.

Created By createdBy Table String Name of a user who created the table in OpenL
Tablets WebStudio.

Created On createdOn Table Date Date of table creation in OpenL Tablets WebStudio.

Modified By modifiedBy Table String Name of a user who last modified the table in
OpenL Tablets WebStudio.

Modified On modifiedOn Table Date Date of the last table modification in OpenL
Tablets WebStudio.

Dev Properties

The Dev properties group impacts the OpenL Tablets features and enables system behavior management
depending on a property value.

For example, the Scope property defines whether properties are applicable to a particular category of rules or
for the module. If Scope is defined as Module, the properties are applied for all tables in the current module. If

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 101 of 157

Scope is defined as Category, use the Category property to specify the exact category to which the property is
applicable.

Figure 154: The properties are defined for the ‘Police-Scoring’ category

The following topics are included in this section:

• Dev Properties List

• Variation Related Properties

• Using the Precision Property in Testing

Dev Properties List

The Dev group properties are listed in the following table:

Dev group properties

Property Name to be used

in rule tables

Type Table type Level at
which
property
can be
defined

Description

ID id Table All Table Unique ID to be used for calling a
particular table in a set of overloaded
tables without using business dimension
properties.

Note: Constraints for the ID value are the
same as for any OpenL function.

Build Phase buildPhase String All Module,
Category,
Table

Property used to manage dependencies
between build phases.

Note: Reserved for future use.

Validate DT validateDT String Decision
Table

Module,
Category,
Table

Validation mode for decision tables. In
the wrong case an appropriate warning is
issued. Possible values are as follows:

Value Description

on Checks for uncovered or
overlapped cases.

off Validation is turned off.

gap Checks for uncovered cases.

overlap Checks for overlapped cases.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 102 of 157

Dev group properties

Property Name to be used

in rule tables

Type Table type Level at
which
property
can be
defined

Description

Fail On
Miss

failOnMiss Boolean Decision
Table

Module,
Category,
Table

Rule behavior in case no rules were
matched:

• If the property is set to TRUE, an

error occurs along with the
corresponding explanation.

• If the property is set to FALSE, the

table output is set to NULL.

Scope scope String Properties Module,
Category

Scope for the Properties table.

Datatype
Package

datatypePackage String DataType Table Name of the Java package for generating
the data type.

Recalculate recalculate Enum Module,
Category,
Table

Way of a table recalculation for a
variation. Possible values are Always,
Never, and Analyze.

Cacheable

cacheable Boolean Module,

Category,
Table

Identifier of whether to use cache while
recalculating the table, depending on the
rule input.

Precision precision Integer Test Table Module,
Category,
Table

Precision of comparing the returned
results with the expected ones while
launching test tables.

Auto Type
Discovery

autoType Boolean Properties

Spreadsheet

Module,
Category,
Table

Auto detection of data type for a value of
the Spreadsheet cell with formula. The
default value is true. If the value is true,
the type can be left undefined.

Concurrent
Execution

parallel Boolean Module,
Category,
Table

Controls whether to parallel the
execution of a rule when the rule is called
for an array instead of a single value as
input parameter. Default is false.

Calculate
All Cells

calculateAllCells Boolean Spreadsheet Module,
Category,
Table

Returns a particular type. Default is true
when calculation is started from the
beginning of the spreadsheet. If this
property is set to false, calculation is
started from the last line of the
spreadsheet.

Empty
Result
Processing

emptyResultProcessing String Decision
table

Module,
Category,
Table

Identifier of whether to process blank
parameter value cells and return an
empty result if found, or ignore and find
the first non-empty result value.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 103 of 157

Variation Related Properties

This section describes variations and the properties required to work with them, namely Recalculate and
Cacheable.

A variation means additional calculation of the same rule with a modification in its arguments. Variations are
very useful when calculating a rule several times with similar arguments. The idea of this approach is to calculate
once the rules for a particular set of arguments and then recalculate only the rules or steps that depend on the
fields specifically modified by variation in those arguments. For example, a user wants to compare the premium
with an original set of parameters defined to the results where one or more attributes are varied to see how it
impacts the premium and what is the best option for this user.

The following Dev properties are used to manage rules recalculation for variations:

Dev properties

Property Description

Cacheable Switches on or off using cache while recalculating the table. It can be evaluated to true or false. If it is set
to true, all calculation results of the rule are cached and can be used in other variations; otherwise,
calculation results are not cached.

It is recommended to set Cacheable to true if recalculating a rule with the same input parameters is
suggested. In this case, OpenL does not recalculate the rule, instead, it retrieves the results from the cache.

Recalculate Explicitly defines the recalculation type of the table for a variation. It can take the following values:

Value Description

Always If the Recalculate property is set to Always for a rule, the rule is entirely recalculated for a
variation. This value is useful for rule tables which are supposed to be recalculated.

Never If the Recalculate property is set to Never for a rule, the system does not recalculate the rule for
a variation. It can be set for rules which new results users are not interested in and which are
not required for a variation.

Analyze It must be used for the top level rule tables to ensure recalculation of the included rules with the
Always value. The included table rules with the Never value are ignored.

By default, the properties are set as follows:

recalculate = always;

cacheable = false.

To provide an illustrative example of how to use variation related properties, consider the Spreadsheet rule
DwellPremiumCalculation, as displayed in the following figure, which calculates a home insurance premium
quote. The quote includes calculations of Protection and Key factors which values are dependent on Coverage A
limit as defined in the ProtectionFactor and KeyFactor simple rules. The insurer requests to vary Coverage A
limit of the quote to verify how limit variations impact the Key factor.

DwellPremiumCalculation is a top level rule and during recalculation of the rule, only some results are of
interest. That is why recalculation type, or the recalculate property, must be defined as Analyze for this rule.

As the interest of the insurer is to get a new value of the Key factor for a new Coverage A limit value,
recalculation type of the KeyFactor rule must be determined as Always.

On the contrary, the Protection factor is not interesting for the insurer, so the ProtectionFactor rule is not
required to be recalculated. To optimize the recalculation process, recalculation type of the rule must be set up
as Never. Moreover, other rules tables, such as the BaseRate rule, which are not required to be recalculated,
must have the recalculation property set to Never.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 104 of 157

Figure 155: Spreadsheet table which contains Recalculate Property

Figure 156: Decision table with defined Recalculate Property

Figure 157: Usage of Variation Recalculate Properties

Consider that the Coverage A limit of the quote is 90 and Protection Class is 9. A modified value of Coverage A
limit for a variation is going to be 110. The following spreadsheet results after the first calculation and the
second recalculation are obtained:

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 105 of 157

Figure 158: Results of DwellPremiumCalculation with recalculation = Analyze

Note that the Key factor is recalculated, but the Protection factor remains the same and the initial value of
Protection Factor parameter is used.

If the recalculation type of DwellPremiumCalculation is defined as Always, OpenL Tablets ignores and does not
analyze recalculation types of nested rules and recalculates all cells as displayed in the following figure.

Figure 159: Results of DwellPremiumCalculation with recalculation = Always

Using the Precision Property in Testing

This section describes how to use the precision property. The property must be used for testing purpose and is
only applicable to the test tables.

There are cases when it is impossible or not needed to define the exact numeric value of an expected result in
test tables. For example, non-terminating rational numbers such as π (3.1415926535897…) must be
approximated so that it can be written in a cell of a table.

The Precision property is used as a measure of accuracy of the expected value to the returned value to a certain
precision. Assume the precision of the expected value A is N. The expected value A is true only if

|A – B| < 1/10N, where B – returned value.

It means that if the expected value is close enough to the returned value, the expected value is considered to be
true.

Consider the following examples. A simple rule FinRatioWeight has two tests, FinRatioWeightTest1 and
FinRatioWeightTest2:

Figure 160: An example of Simple Rule

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 106 of 157

The first test table has the Precision property defined with value 5:

Figure 161: An Example of Test table with Precision Dev property

Figure 162: An example of Test with precision defined

When this test is launched, the first test case is passed because |0.11121358 - 0.111207645| = 0.5935*10-5 <
0.00001; but the second is failed because |0.05410091 - 0.054117651| = 1.6741*10-5 > 0.00001.

OpenL Tablets allows specifying precision for a particular column which contains expected result values using
the following syntax:

 res (N)

 res.$<ColumnName>$<RowName> (N)

 res.<attribute name> (N)

An example of the table using shortcut definition is as follows.

Figure 163: Example of using shortcut definition of Precision Property

Figure 164: An example of Test with precision for the column defined

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 107 of 157

Precision property shortcut definition is required when results of the whole test are considered with one level of
rounding, and some expected result columns are rounded to another number of figures to the right of a decimal
point.

Precision defined for the column has higher priority than precision defined at the table level.

Precision can be zero or a negative value, Integer numbers only.

Properties Defined in the File Name

Module level properties, or table properties applied to all tables of a module, can be defined in the module file
name. These properties are usually specified when the logic of the whole project must be split by certain major
parameters, such as country, state, or date. The following conditions must be met for such properties definition:

• A file name pattern is configured directly in a rules project descriptor, in the rules.xml file, as the
properties-file-name-pattern tag, or via OpenL Tablets WebStudio as Properties pattern for a file
name in the Project page.

• The module file name matches the pattern.

The file name pattern can include the following:

• text symbols

• table property names enclosed in ‘%’ marks

Multiple properties can be defined under one pattern and then parsed into different properties. For
example, the .*-%lob%-%effectiveDate,startRequestDate:ddMMyyyy%-%state% pattern allows a user to
parse effectiveDate and start RequestDate property values.

• wildcards, or characters that may be substituted for any of a defined subset of all possible
characters

For more information on wildcards that can be used in a pattern as regular expressions, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

If a table property value is supposed to be a date, the Date format must be specified right after the property
name and colon as follows:
...<text>%<property name>%<text>%<property name>:<date format>%...

Example: .*-%state%-%effectiveDate %-%startRequestDate %

In this example, the project name or any other text comes instead of .*. Any part of this pattern can be
replaced, removed, or its order can be changed. For more information on properties that can be included,
see Business Dimension Properties.

For more information on date formats description and examples, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html.

The default date format is yyyyMMdd.

File name pattern definition can use wildcards. For example, the .*-%startRequestDate:MMddyyyy% pattern is
defined. Then for the AUTO-01012013.xls file name, the module property Start Request Date = 01 Jan 2013 is
retrieved and the first part of the file name with the text is ignored as .* stands for any symbols.

In the following example, the Bank Rating project is configured in the way so that a user can specify the US State
and Start Request Date properties values using the module file name:

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 108 of 157

Figure 165: File name pattern configured via OpenL Tablets WebStudio

Figure 166: File name pattern in a rules project descriptor directly

Multiple patterns can be used for a file name, for example, to process module names differently. In this case,
first, modules are compared to the first pattern, then the modules that did not match the first pattern and
compared to the next pattern and so on.

For instance, for the Bank Rating project module with the file name AUTO-FL-01012014.xlsx, the module
properties US State= ‘Florida’, Start Request Date = 01 Jan 2014 will be retrieved and inherited by module
tables.

If a file name does not match the pattern, module properties are not defined.

To view detailed information about the properties added to the file name pattern, click information icon next to
the Properties pattern for a file name field.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 109 of 157

Figure 167: Properties file name pattern description

The same property cannot be defined both in a file name and Properties table of the module.

For the lob, caProvinces, lang, country, currency, usregion, and state properties, multiple comma-separated
values can be defined in the file name for usage. An example for three LOB and two states is as follows:

Product-CRV,MTH,STR-rules-01022018-01022018-OK,PR.xlsx

A template for this example is as follows: .*-%lob%-.*-%effectiveDate:ddMMyyyy%-
%startRequestDate:ddMMyyyy%-%state%

Properties are stored not as single values, but as arrays of values.

Note for experienced users: This section describes default implementation of properties definition in the file name. To
use a custom implementation, specify the required file name processor class in a rules
project descriptor. When the Custom file name processor check box is selected, the File
name processor class field is displayed.

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 110 of 157

Figure 168: Custom file name processor class

Properties Defined in the Folder Name

Besides file names, module level properties can be defined in folder names, for example,
/rules/%lob%/%state%/Module.xlsx.

The following Ant and file patterns are supported:

Supported Ant and file patterns

Pattern Description

/path/to/file.ext Absolute path.

/*/ Any folder.

/**/ Any amount of nested folders, including no folders.

* Any character of the file name.

. Separator of the file extension.

? Any one symbol of the file name.

Keywords Usage in a File Name

The Any keyword can be used for rule module versioning, for all business enumeration properties. Enumeration
properties have a predefined and finite list of values. Examples of enumeration properties are currency, state,

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 111 of 157

province, region, and language. The Any keyword can substitute any enumeration property values. For the
property pattern .*-%state%-%effectiveDate %-%currency %, examples are Vision Rules-Any-20190101-
USD.xlsx and Vision Rules-NY-20190101-Any.xlsx.

An alternative keyword for the state business property is CW, which stands for country wide. If the CW value is
set to the Property State in a file name, the rules of the corresponding module work for any state. Usually, only
one value can be indicated in the file name and listing all values in a filename is not available. This feature
enables listing all values for property state in a file name by defining the CW value instead. It is useful when, for
instance, there are particular files with rules for particular states, and a file with rules common for all states.

To use the feature, define the Properties pattern for a file name as described in Properties Defined in the File
Name.

Figure 169: Defining a property pattern for a state and line of business

For instance, consider the Corporate Bank Calculation project configured as displayed in the previous figure.
The project module with the CORPORATE-CW-TEST.xlsx file name has the following property values:

• US State is any state

• lob = test

OpenL Tablets Reference Guide Creating Tables for OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 112 of 157

Figure 170: Decision table overloaded with all states

To configure a module with the logic specific for one state or a group of states, for example, for NY, name the
module CORPORATE-NY-TEST.xlsx and ensure it has the following property values defined:

• US State = NY

• lob = test

CW includes all states, but as long as NY specific module is created in this example, OpenL Tablets selects this
specific module.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 113 of 157

4 OpenL Tablets Functions and Supported Data
Types

This chapter is intended for OpenL Tablets users to help them better understand how their business rules are
processed in the OpenL Tablets system.

To implement business rules logic, users need to instruct OpenL Tablets what they want to do. For that, one or
several rule tables with user’s rules logic description must be created.

Usually, rules operate with some data from user’s domain to perform certain actions or return some results. The
actions are performed using functions, which, in turn, support particular data types.

This section describes data types and functions for business rules management in the system and introduces
basic principles of using arrays.

The section includes the following topics:

• Working with Arrays

• Working with Data Types

• Working with Functions

4.1 Working with Arrays
An array is a collection of values of the same type. Separate values of an array are called array elements. An
array element is a value of any data type available in the system, such as Integer, Double, Boolean, and String.
For more information on OpenL Tablets Data Types, see Working with Data Types.

Square brackets in the name of the data type indicate that there is an array of values in the user’s rule to be
dealt with. For example, the String[] expression can be used to represent an array of text elements of the
String data type, such as US state names, for example, CA, NJ, and VA. Users use arrays for different purposes,
such as calculating statistics and representing multiple rates.

The following topics are included in this section:

• Working with Arrays from Rules

• Array Index Operators

• Operators and Functions to Work with Arrays

• Rules Applied to Array

• Rules with Variable Length Arguments

Working with Arrays from Rules

Data type arrays can be used in rules as follows:

Using data type arrays in rules

Method Description

By numeric index,
starting from 0

In this case, by calling drivers[5], a user gets the sixth element of the data type array.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 114 of 157

Using data type arrays in rules

Method Description

By user defined
index

This case is a little more complicated. The first field of data type is considered to be the user defined
index. For example, if there is a Driver data type with the first String field name, a data table can be
created, initializing two instances of Driver with the following names: John and David. Then in rules,
the required instance can be called by drivers[“David”]. All Java types, including primitives, and
data types can be used for user specific indexes. When the first field of data type is of int type
called id, to call the instance from array, wrap it with quotes as in drivers[“7”]. In this case, a
user does not get the eighth element in the array, but the Driver with ID=7.

For more information on data tables, see Data Table.

By conditional
index

Another case is to use conditions that consider which elements must be selected. For this purpose,
SELECT operators are used, which specify conditions for selection. For more information on how to
use SELECT operators, see Array Index Operators.

By other array
index operators
and functions

Any index operator listed in Array Index Operators or a function designed to work with arrays can
be applied to an array in user’s rules. The full list of OpenL Tablets array functions is provided in
Appendix B: Functions Used in OpenL Tablets.

When referencing the non-existing element by array[index], for primitive types, the default value is returned,
and for other types, null is returned.

Array Index Operators

Array index operators are operators which facilitate working with arrays in rules. Index operators are specified
in square brackets of the array and apply particular actions to array elements.

This section provides detailed description of index operators along with examples. OpenL Tablets supports the
following index operators:

• SELECT Operators

• ORDER BY Operators

• SPLIT BY Operator

• TRANSFORM TO Operators

• Array Index Operators and Arrays of the SpreadsheetResult Type

• Advanced Usage of Array Index Operators

SELECT Operators

There are cases requiring conditions that determine the elements of the array to be selected. For example, if
there is a data type Driver with such fields as name of the String type, age of the Integer type, and other similar
data, and all drivers with the name John aged under 20 must be selected, use the following SELECT operator
realizing conditional index:

arrayOfDrivers[select all having name == “John” and age < 20]

The following table describes the SELECT operator types:

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 115 of 157

SELECT operator types

Type Description

Returns the first element
satisfying the condition

Returns the first matching element or null if there is no such element.

Syntax: array[!@ <condition>] or array[select first having <condition>]
or array[select first where <condition>]

Example: arrayOfDrivers[!@ name == “John” and age < 20]

Returns all elements
satisfying the condition

Returns the array of matching elements or empty array if there are no such elements.

Syntax: array[@ <condition>] or array [select all having <condition>] or
array[select all where <condition>]

Example: arrayOfDrivers[@ numAccidents > 3]

ORDER BY Operators

These operators are intended to sort elements of the array. Consider a data type Claim with such fields as
lossDate of the Date type, paymentAmount of the Double type, and other similar data, and all claims must be
sorted by loss date starting with the earliest one. In this case, use the ORDER BY operator, such as claims[order
by lossDate].

The following table describes ways of sorting:

ORDER BY sorting methods

Method Description

Sort elements by
increasing order

Syntax: array[^@ <expression>] or array[order by <expression>] or array[order
increasing by <expression>]

Example: claims[^@ lossDate]

Sort elements by
decreasing order

Syntax: array[v@ <expression>] or array[order decreasing by <expression>]

Example: claims[v@ paymentAmount]

Note: The operator returns the array with ordered elements. It saves element order in case of equal elements.
<expression> by which ordering is performed must have a comparable type, such as Date, String, Number.

SPLIT BY Operator

To split array elements into groups by definite criteria, use SPLIT BY operator, which returns a collection of
arrays with elements in each array of the same criteria. For example, codes = {"5000", "2002", "3300",
"2113"}; codes[split by substring(0,1)] will produce three collections, {"5000"}, {"2002", "2113"}
and {"3300"} united by codes with the equal first number.

Syntax: array[~@ <expression>] or array[split by <expression>]

Example: orders[~@ orderType]

where orders of Order[] data type, custom data type Order has a field orderType for defining a category of
Order. The operator in the example produces Order[][] split by different categories.

The SPLIT BY operator returns a two-dimensional array containing arrays of elements split by an equal value of
<expression>. The relative element order is preserved.

TRANSFORM TO Operators

This operator turns source array elements into another transformed array in a quick way. Assume that a
collection of claims is available, and claim ID and loss date information for each claim in the form of array of

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 116 of 157

strings needs to be returned. Use the TRANSFORM TO operator, such as claims[transform to id + " - " +
dateToString(lossDate, "dd.MM.YY")].

The following table describes methods of transforming:

TRANSFORM TO methods

Method Description

Transforms elements and returns
the whole transformed array

Syntax: array[*@ <expression>] or array[transform to <expression>]

Example: drivers[transform to name] or drivers[*@ name]

Transforms elements and returns
unique elements of the
transformed array only

Syntax: array[*!@ <expression>] or array[transform unique to
<expression>]

Example: drivers[transform unique to vehicle] or drivers[*!@
vehicle]

Example: otherProducts [(p) transform unique to p]

returns a unique list of products where “p” is the name given by a user for the
transformed array.

The example above produces collection of vehicles, and in this collection, each vehicle is listed only once,
without identical vehicles.

The operator returns array of the <expression> type. The order of the elements is preserved.

Any field, method of the collection element, or any OpenL Tablets function can be used in <condition> /
<expression>, for example: claims[order by lossDate], where lossDate is a field of the Claim array
element; arrayOfCarModels[@ contains("Toyota")], where contains is a method of String element of the
arrayOfCarModels array.

Array Index Operators and Arrays of the SpreadsheetResult Type

Array index operators can be used with arrays which elements are of SpreadsheetResult data type. To refer to a
cell of SpreadsheetResult element in the operator condition, the full $columnName$rowName or simplified
reference format is used.

Consider an example with select operator. There is a rule which selects and returns spreadsheet result with
value 2 in the $Formula$EmployeeClassId cell.

Figure 171: index operator applied on array of SpreadsheetResults

where the spreadsheet result element of allEmployeeClassPremiums array is calculated from the following
spreadsheet table:

Figure 172: Spreadsheet for allEmployeeClassPremiums array result calculation

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 117 of 157

Advanced Usage of Array Index Operators

Consider a case when the name of the array element needs to be referred explicitly in condition or expression.
For example, the policy has a collection of drivers of Driver[] data type and a user wants to select all policy
drivers of the age less than 19, except for the primary driver. The following syntax with an explicit definition of
the Driver d collection element can be used:

policy.drivers[(Driver d) @ d != policy.primaryDriver && d.age < 19]

The expression can be written without type definition in case when the element type is known:

policy.drivers[(d) @ d != policy.primaryDriver && d.age < 19]

Note for experienced users: Array index operators can be applied to lists. Usually it requires using a named element to
define a type of list components, such as List claims = policy.getClaims();
claims[(Claim claim) order by claim.date] or List claims =
policy.getClaims(); claims[(Claim claim) ^@ date].

Operators and Functions to Work with Arrays

This section describes operators and functions used in work with arrays and includes the following topics:

• Length Function

• Comparison Operators

For more information on array functions, see Appendix B: Functions Used in OpenL Tablets.

Length Function

The Length array function returns the number of elements in the array as a result value. An example is as
follows.

Figure 173: Rule table with the length function

In this example, the Insurance procedure depends on the number of vehicles. The policy includes vehicles field
represented as array.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 118 of 157

Figure 174: Test table for rule table with length function

Policy2 contains two vehicles as illustrated in the following data table.

Figure 175: Data table for a test table

Note: The length function can be used for maps, in the same way as it is used for collections and arrays.

Comparison Operators

== and != comparison operators can be applied to arrays. Array elements are compared one-by-one, and for
each element pair, if comparison result is true, all array comparison result is true. For more information on
operators, see Operators Used in OpenL Tablets.

Rules Applied to Array

OpenL Tablets allows applying a rule intended for work with one value to an array of values. The following
example demonstrates this feature in a very simple way.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 119 of 157

Figure 176: Applying a rule to an array of values

The VehicleCalculation rule is designed for working with one vehicle as an input parameter and returns one
spreadsheet as a result. In the example, this rule is applied to an array of vehicles, which means that it is
executed for each vehicle and returns an array of spreadsheet results.

If several input parameters for a rule are arrays where the rule expects only a single value, the rule is separately
calculated for each element of these arrays, and the result is an array of the return type. In other words, OpenL
Tablets executes the rule for each combination of input values from arrays and return a collection of all these
combinations’ results. The order in which these arrays are iterated is not specified.

Note: OpenL Tablets engine may run parts of one request in parallel and Dev property Concurrent Execution is used to
enable or disable this behavior in case when the rule table is applied to an array of value instead of a single value.
Concurrent Execution is useful for complex rule sets where parallel execution will improve performance for a
single request. But note that modifying arguments of the rule are not thread safe.

Rules with Variable Length Arguments

If the last input of the table is an array, OpenL Tablets allows passing this array as an array or a set of comma-
separated elements.

An example is as follows:

Spreadsheet Integer RatingFunction(Integer index, String customerName, Double[] rates)

It can be called as follows:

RatingFunction(5, "SomeCompany", 10, 12, 14, 13)

In this example, OpenL recognizes and transforms all last numbers-inputs into a single array of numbers-input.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 120 of 157

4.2 Working with Data Types
Data in OpenL Tablets must have a type of data defined. A data type indicates the meaning of the data, their
possible values, and instructs OpenL Tablets how to process operations, which rules can be performed, and how
these rules and operations affect data.

All data types used in OpenL Tablets can be divided into the following groups:

Data types in OpenL Tablets

Type Description

Predefined data types Types that exist in OpenL Tablets, can be used, but cannot be modified.

Custom data types and
vocabularies

Types created by a user as described in the Datatype Table section.

This section describes predefined data types that include the following ones:

• Simple Data Types

• Range Data Types

Simple Data Types

The following table lists simple data types that can be used in user’s business rules in OpenL Tablets:

Simple data types

Data type Description Examples Usage in OpenL Tablets

Integer Used to work with whole
numbers without fraction
points. The maximum Integer
value is 2147483647.

8; 45; 12; 356; 2011 Common for representing a variety of
numbers, such as driver’s age, a year, a
number of points, and mileage.

Double Used for operations with
fractional numbers. Can hold
very large or very small
numbers.

8.4; 10.5; 12.8; 12,000.00;
44.416666666666664

Commonly used for calculating balances or
discount values for representing exchange
rates, a monthly income, and so on. In other
words, the dollar or any other currency
value that does not require very high
precision must be of a Double data type. A
good practice is to explicitly round Double
values to a business significative number of
decimals after calculation, at least in end
results.

String Represents text rather than
numbers. String values are
comprised of a set of
characters that can contain
spaces and numbers. For
example, the word Chrysler
and the phrase The Chrysler
factory warranty is valid for 3
years are both Strings.

John Smith, London,
Alaska, BMW; Driver is too
young.

Represents cities, states, people names, car
models, genders, marital statuses, as well as
messages, such as warnings, reasons, notes,
diagnosis, and other similar data.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 121 of 157

Simple data types

Data type Description Examples Usage in OpenL Tablets

Boolean Represents only two possible
values: true and false.

For example, if a driver is
trained, the condition is true,
and the insurance premium
coefficient is 1.5. If the driver
is not trained, the condition is
false, and the coefficient is
0.25.

true; yes; y; false; no; n

Handles conditions in OpenL Tablets. The
synonym for ‘true’ is ‘yes’, ‘y’; for ‘false’ –
‘no’, ‘n’.

Date Used to operate with dates. 06/05/2010;
01/22/2014; 11/07/95;
1/1/1991.

Represents any dates, such as policy effective
date, date of birth, and report date. If the date
is defined as a text cell value, it is expected in
the <month>/<date>/<year> format.

Byte, Character, Short, Long, Float, BigInteger, and BigDecimal data types are rarely used in OpenL Tablets,
therefore, ranges of values are only provided in the following table. For more information about values, see the
appropriate Java documentation.

Ranges of values

Data type Min Max

Byte -128 127

Character 0 65535

Short -32768 32767

Long -9223372036854775808 9223372036854775807

Float 1.5*10-45 3.481038

There is no range limits for BigInteger and BigDecimal. Using these values can cause performance issues and
thus must be avoided.

Range Data Types

Range Data Types can be used when a business rule must be applied to a group of values. For example, a driver’s
insurance premium coefficient is usually the same for all drivers from within a particular age group. In such
situation, a range of ages can be defined, and one rule for all drivers from within that range can be created. The
way to inform OpenL Tablets that the rule must be applied to a group of drivers is to declare driver’s age as the
range data type.

OpenL Tablets supports the following range data types:

Range data types in OpenL Tablets

Type Description

IntRange Intended for processing whole numbers within an interval, for example, vehicle or driver age for
calculation of insurance compensations, or years of service when calculating the annual bonus.

Range borders are stored as Long values.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 122 of 157

Range data types in OpenL Tablets

Type Description

DoubleRange Used for operations on fractional numbers within a certain interval. For instance, annual percentage rate
in banks depends on amount of deposit which is expressed as intervals: 500 – 9,999.99; 10,000 –
 24,999.99.

CharRange Used for processing character values within a predefined interval.

DateRange Used for processing dates within a predefined interval. Only default date format, such as 01/01/1999 or
01/01/1999 12:12:12, is supported.

StringRange Used for processing string values within a predefined interval. If a string contains numbers, they are
treated in a regular way. For example, for a string range [A1...A3], A2 is within the range, and A22 is out
of the range. StringRange conditions can be defined in smart rules and smart lookups, while in simple
rules and simple lookups it is interpreted as String.

The following illustration provides a very simple example of how to use a range data type. The value of discount
percentage depends on the number of orders and is the same for 4 to 5 orders and 7 to 8 orders. An amount of
cars per order is defined as IntRange data type. For a number of orders from, for example, 6 to 8, the rule for
calculating the discount percentage is the same: the discount percentage is 10.00% for BMW, 4.00% for Porsche,
and 6.00% for Audi.

Figure 177: Usage of the range data type

Supported range formats are as follows:

Range formats

Format Interval Example Values for IntRange

1 [<min_number>; <max_number>)

Mathematic definition for ranges using square
brackets for included borders and round brackets for
excluded borders.

[min; max]

(min; max)

[min; max)

(min; max]

[1; 4]

(1; 4)

[1; 4)

(1; 4]

1, 2, 3, 4

2, 3

1, 2, 3

2, 3, 4

2 [<min_number> .. <max_number>)

Mathematic definition for ranges with two dots used
instead of semicolon.

[min; max]

(min; max)

[min; max)

(min; max]

[1 .. 4]

(1 .. 4)

[1 .. 4)

(1 .. 4]

1, 2, 3, 4

2, 3

1, 2, 3

2, 3, 4

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 123 of 157

Range formats

Format Interval Example Values for IntRange

3 [<min_number> - <max_number>)

Mathematic definition for ranges with a hyphen used
instead of a semicolon.

[min - max]

(min - max)

[min - max)

(min - max]

[1 - 4]

(1 - 4)

[1 - 4)

(1 - 4]

1, 2, 3, 4

2, 3

1, 2, 3

2, 3, 4

4 <min_number> – <max_number> [min; max] 1 - 4

-2 - 2

-4 - -2

[1; 4]

[-2; 2]

[-4; -2]

5 <min_number> .. <max_number> [min; max] 1 .. 4 1, 2, 3, 4

6 <min_number> … <max_number> (min; max) 1 … 4 2, 3

7 <<max_number> [-∞; max) <2 -∞ …, -1, 0, 1

8 <=<max_number> [-∞; max] <=2 -∞ …, -1, 0, 1, 2

9 ><min_number> (min; +∞] >2 3, 4, 5, … +∞

10 >=<min_number> [min; +∞] >=2 2, 3, 4, 5, … +∞

11 ><min_number> <<max_number>

<<max_number> ><min_number>

(min; max) >1 <4

<4 >1

2, 3

2, 3

12 >=<min_number> <<max_number>

<<max_number> >=<min_number>

[min; max) >=1 <4

<4 >=1

1, 2, 3

1, 2, 3

13 ><min_number> <=<max_number>

<=<max_number> ><min_number>

(min; max] >1 <=4

<=4 >1

2, 3, 4

2, 3, 4

14 >=<min_number> <=<max_number>

<=<max_number> >=<min_number>

[min; max] >=1 <=4

<=4 >=1

1, 2, 3, 4

1, 2, 3, 4

15 <min_number>+ [min; +∞] 2+ 2, 3, 4, 5, … +∞

16 <min_number> and more [min; +∞] 2 and more 2, 3, 4, 5, … +∞

17 more than <min_number> (min; +∞] more than 2 3, 4, 5, … +∞

18 less than <max_number> [-∞; max) less than 2 -∞ …, -1, 0, 1

The following rules apply:

• Infinities in IntRange are represented as Integer.MIN_VALUE for -∞ and Integer.MAX_VALUE for +∞.

• Using of ".." and "..." requires spaces between numbers and dots.

• Numbers can be enhanced with the $ sign as a prefix and K, M, B as a postfix, for example, $1K = 1000.

• For negative values, use the ‘-’ (minus) sign before the number, for example, -<number>.

4.3 Working with Functions
Data types are used to represent user data in the system. Business logic in rules is implemented using functions.
Examples of functions are the Sum function used to calculate a sum of values and Min/Max functions used to
find the minimum or maximum values in a set of values.

This section describes OpenL Tablets functions and provides simple usage examples. All functions can be divided
into the following groups:

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 124 of 157

• math functions

• array processing functions

• date functions

• String functions

• error handling functions

The following topics are included in this section:

• Understanding OpenL Tablets Function Syntax

• Math Functions

• Date Functions

• Special Functions and Operators

• Null Elements Usage in Calculations

Understanding OpenL Tablets Function Syntax

This section briefly describes how functions work in OpenL Tablets.

Any function is represented by the following elements:

• function name or identifier, such as sum, sort, median

• function parameters

• value or values that the function returns

For example, in the max(value1, value2) expression, max is the rule or function name, (value1, value2) are
function parameters, that is, values that take part in the action. When determining value1 and value2 as 50 and
41, the given function looks as max(50, 41) and returns 50 in result as the biggest number in the couple.

If an action is performed in a rule, use the corresponding function in the rules table. For example, to calculate
the best result for a gamer in the following example, use the max function and enter max(score1, score2, score3)
in the C1 column. This expression instructs OpenL Tablets to select the maximum value in the set. The contains
function can be used to determine the gamer level.

Subsequent sections provide description for mostly often used OpenL Tablets functions. For a full list of
functions, see Appendix B: Functions Used in OpenL Tablets.

Math Functions

Math functions serve for performing math operations on numeric data. These functions support all numeric data
types described in Working with Data Types.

The following example illustrates how to use functions in OpenL Tablets. The rule in the diagram defines a gamer
level depending on the best result in three attempts.

Figure 178: An example of using the ‘max’ function

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 125 of 157

The following topics are included in this section:

• Math Functions Used in OpenL Tablets

• Round Function

Math Functions Used in OpenL Tablets

The following table lists math functions used in OpenL Tablets:

Math functions used in OpenL Tablets

Function Description

min/max Returns the smallest or biggest element in a set of elements of comparable type for an array or multiple
values. The result type depends on the entry type.
min/max(element1, element2, …)

min/max(array[])

For example, if Date1= 01/02/2009 and Date2= 03/06/2008 are variables of the Date type, max(Date1,
Date2) returns 01/02/2009.

sum Adds all numbers in the provided array and returns the result as a number.
sum(number1, number2, …)

sum(array[])

avg Returns the arithmetic average of array elements. The function result is a floating value.
avg(number1, number2, …)

avg(array[])

product Multiplies numbers from the provided array and returns the product as a number.
product(number1, number2, …)

product(array[])

mod Returns the remainder after a number is divided by a divisor. The result is a numeric value and has the same
sign as the devisor.
mod(number, divisor)

number is a numeric value which’s remainder must be found. divisor is the number used to divide the
number. If the divisor is 0, the mod function returns an error.

sort Returns values from the provided array in ascending sort. The result is an array.
sort(array[])

round Rounds a value to a specified number of digits. For more information on the ROUND function, see Round
Function.

Round Function

The ROUND function is used to round a value to a specified number of digits. For example, in financial
operations, users may want to calculate insurance premium with accuracy up to two decimals. Usually, a
number of digits in long data types, such as Double, must be limited. The ROUND function allows rounding a
value to a whole number or to a fractional number with limited number of signs after decimal point.

The ROUND function syntax is as follows:

ROUND function syntax

Syntax Description

round(number) Rounds to the whole number.

round(number, int) Rounds to the fractional number. int is a number of digits after decimal point.

round(number, int, int) Rounds to the fractional number and enables to get results different from usual

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 126 of 157

mathematical rules:

• The first int stands for a number of digits after decimal point.

• The second int stands for a rounding mode represented by a constant, for
example, 1- ROUND_DOWN, 4- ROUND_HALF_UP.

The following topics are included in this section:

• round(number)

• round(number,int)

• round(number,int,int)

round(number)

This syntax is used to round to a whole number. The following example demonstrates function usage:

Figure 179: Rounding to integer

Figure 180: Test table for rounding to integer

round(number,int)

This function is used to round to a fractional number. The second parameter defines a number of digits after
decimal point.

Figure 181: Rounding to a fractional number

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 127 of 157

Figure 182: Test table for rounding to a fractional number

round(number,int,int)

This function allows rounding to a fractional number and get results by applying different mathematical rules.
The following parameters are expected:

• Number to round

• The first int stands for a number of digits after decimal point

• The second int stands for a rounding mode represented by a constant, for example, 1- ROUND_DOWN, 4-

ROUND_HALF_UP.

The following table contains a list of the constants and their descriptions:

Constants list

Constant Name Description

0 ROUND_UP Rounding mode to round away from zero.

1 ROUND_DOWN Rounding mode to round towards zero.

2 ROUND_CEILING Rounding mode to round towards positive infinity.

3 ROUND_FLOOR Rounding mode to round towards negative infinity.

4 ROUND_HALF_UP Rounding mode to round towards the nearest neighbor unless both neighbors
are equidistant, in which case round up.

5 ROUND_HALF_DOWN Rounding mode to round towards the nearest neighbor unless both neighbors
are equidistant, in which case round down.

6 ROUND_HALF_EVEN Rounding mode to round towards the nearest neighbor unless both neighbors
are equidistant, in which case, round towards the even neighbor.

7 ROUND_UNNECESSARY Rounding mode to assert that the requested operation has an exact result,
hence no rounding is necessary.

For more information on the constants representing rounding modes, see
https://docs.oracle.com/en/java/javase/11/docs/api/constant-
values.html#java.math.BigDecimal.ROUND_HALF_DOWN.

https://docs.oracle.com/en/java/javase/11/docs/api/constant-values.html#java.math.BigDecimal.ROUND_HALF_DOWN
https://docs.oracle.com/en/java/javase/11/docs/api/constant-values.html#java.math.BigDecimal.ROUND_HALF_DOWN

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 128 of 157

For more information on the constants with examples, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/math/class-use/RoundingMode.html, Enum
Constant Details section.

The following example demonstrates how the rounding works with the ROUND_DOWN constant.

Figure 183: Usage of the ROUND_DOWN constant

Figure 184: Test table for rounding to fractional number using the ROUND_DOWN constant

Date Functions

OpenL Tablets supports a wide range of date functions that can be applied in the rule tables. The following date
functions return an Integer data type:

Date functions used in OpenL Tablets that return an Integer data type

Function Description

absMonth Returns the number of months since AD.
absMonth(Date)

absQuarter Returns the number of quarters since AD as an integer value.
absQuarter(Date)

dayOfWeek Takes a date as input and returns the day of the week on which that date falls. Days in a week are
numbered from 1 to 7 as follows: 1=Sunday, 2=Monday, 3 = Tuesday, and so on.
dayOfWeek(Date d)

dayOfMonth Takes a date as input and returns the day of the month on which that date falls. Days in a month are
numbered from 1 to 31.
dayOfMonth(Date d)

dayOfYear Takes a date as input and returns the day of the year on which that date falls. Days in a year are
numbered from 1 to 365.
dayOfYear(Date d)

weekOfMonth Takes a date as input and returns the week of the month within which that date is. Weeks in a month are

numbered from 1 to 5.
weekOfMonth(Date d)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/math/class-use/RoundingMode.html

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 129 of 157

Date functions used in OpenL Tablets that return an Integer data type

Function Description

weekOfYear Takes a date as input and returns the week of the year on which that date falls. Weeks in a year are
numbered from 1 to 54.
weekOfYear(Date d)

second Returns a second (0 to 59) for an input date.
second(Date d)

minute Returns a minute (0 to 59) for an input date.
minute(Date d)

hour Returns the hour of the day in 12 hour format for an input date.
hour(Date d)

hourOfDay Returns the hour of the day in 24 hour format for an input date.
hourOfDay(Date d)

The following date function returns a String data type:

Date function used in OpenL Tablets that returns a String data type

Function Description

amPm(Date d) Returns Am or Pm value for an input date.
amPm(Date d)

The following figure displays values returned by date functions for a particular input date specified in the
MyDate field.

Figure 185: Date functions in OpenL Tablets

The following decision table provides a very simple example of how the dayOfWeek function can be used when
the returned value, Risk Factor, depends on the day of the week.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 130 of 157

Figure 186: A risk factor depending on a day of the week

Special Functions and Operators

OpenL Tablets supports a variety of different special functions and syntax to make rules creation easier and
more convenient for business users.

The following topics are included in this section:

• Error Function

• Ternary Operator

• Performing Operations via Formula

• Pattern-Matching Function

Error Function

The ERROR function is used to handle exceptional cases in a rule when an appropriate valid returned result
cannot be defined. The function returns a message containing problem description instead and stops processing.
The message text is specified as the error function parameter.

In the following example, if the value for a coverage limit of an insurance policy exceeds 1000$, a rule notifies a
user about wrong limit value and stops further processing.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 131 of 157

Figure 187: Usage of the ERROR function

Ternary Operator

?: is a ternary operator that is a part of the syntax for simple conditional expressions. It is commonly referred to
as the conditional operator, inline if (iif), or ternary if.

Formula (expression) ? (value1) : (value2) returns value1 if condition expression is true, otherwise,
value2.

:(value2) part is optional. If it is not defined, null is returned if the condition is false.

An example of a ternary operator is as follows:

Figure 188: Ternary operator example

In if-then expression, this example stands for the following:

If (useCensus == true) then { Amount step value = percentAmount} else { Amount step value = flatAmount}.

For more information on ternary operators, see https://en.wikipedia.org/wiki/Ternary_operation.

To create more complex conditional expressions, use decision tables.

Performing Operations via Formula

A user can write several operations in a cell’s formula or in expression statement of the Decision table by
separating each operation with the ‘;’ sign. The result of the last operation is defined as a returned value of the
cell as follows:

‘= Expression1; Expression2; …; ResultedExpression

In practice, it is widely used when a user needs to store calculated values in the input object fields by using the
following syntax:

‘= field = value

or

‘= field1 = value1; field2 = value2 …; ResultedExpression

In the following example, the Age step calculates the age and stores the result in the vehicleAge field of the
input object vehicle, the Scoring step calculates several scoring parameters, stores them in the scoring object,

https://en.wikipedia.org/wiki/Ternary_operation

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 132 of 157

and returns the object with updated fields as a result of the step:

Figure 189: Example of performing operations via formula

Pattern-Matching Function

A pattern-matching function allows verifying whether a string value matches the predefined pattern. For
example, for emails, phone numbers, and zip codes the following function can be used:
like (String str, String pattern)

The result is a Boolean value indicating whether the string equals the pattern.
The like function provides a versatile tool for string comparison. The pattern-matching feature allows a user to
match each character in a string against a specific character, a wildcard character, a character list, or a character
range. The following table lists the characters allowed in a pattern and describes what they match:

Characters allowed in the pattern

Characters in pattern Meaning

? One character.

* Zero or multiple characters.

One digit.

@ One letter.

[a-k] One character from the set.

[!v-z] One character not from the set.

Pattern+ Pattern applied at least once.

[?] Match to '?'.

[*] Match to '*'.

[#] Match to '#'.

[@] Match to '@'.

[+] Match to '+'.

[!] Match to '!'.

[!!] NOT match to '!'.

[1!] Match to '!' or '1'.

[!1] NOT match to '1'.

[-1-3] Match to '-', '1', '2', '3'.

Examples are as follows:
like(“(29)687-11-53", “(##)###-##-##") -> TRUE
like (“(29)87-11-53", “(##)###-##-##") -> FALSE
like ("D1010", "[A-D]####") -> TRUE
like ("F1010", "[A-D]####") -> FALSE

Null Elements Usage in Calculations

This section describes how null elements (an element with an empty value) are processed in calculations.

OpenL Tablets Reference Guide OpenL Tablets Functions and Supported Data Types

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 133 of 157

For adding and subtracting, null is interpreted as 0.

For multiplying and dividing, it is interpreted as null. That is, if a=3 and b=null, a*b=null. If null must be
interpreted as 1, that is, a*b=3, import org.openl.rules.binding.MulDivNullToOneOperators.* must be
added to the Environment table.

The following diagrams demonstrate this rule.

Figure 190: Rules for null elements usage in calculations

The next test table provides examples of calculations with null values.

Figure 191: Test table for null elements usage in calculations

If all values are null, the result is also null.

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 134 of 157

5 Working with Projects
This chapter describes creating an OpenL Tablets project. For more information on projects, see Projects.

The following topics are included in this chapter:

• Project Structure

• Rules Runtime Context Management from Rules

• Project and Module Dependencies

5.1 Project Structure
The best way to use the OpenL Tablets rule technology in a solution is to create an OpenL Tablets project in
OpenL Tablets WebStudio. A typical OpenL Tablets project contains Excel files which are physical storage of rules
and data in the form of tables. No Excel functionality, such as formulas and tab references, is used in OpenL
Tablets. On the logical structure level, Excel files represent modules of the project where each Excel file is
considered as one module.

When creating a project, the decision if and how to divide tables into one or many Excel files, or modules, is
driven by the idea of how to present business logic in the most structural way. Generally, it depends on the
project size. For a small project, all tables can fit in one file. For a bigger sized project, it is a good practice to
divide tables per file according to their business purposes: datatype tables in one file, lookup tables in another
file, decision tables and spreadsheet tables in the third file, and tests in the fourth file and so on. The number of
files, or module, per project is unlimited.

Additionally, a project can contain rules.xml, Java classes, JAR files, Groovy scripts, according to developer’s
needs, and other related documents, such as guides and instructions.

Thereby, the structure can be adjusted according to the developer’s preferences, for example, to comply with
the Maven structure.

Note for experienced users: The rules.xml project file is a rules project descriptor that contains project and
configuration details. For instance, a user may redefine a module name there that is the same
as a name of the corresponding Excel file by default. When updating project details via OpenL
Tablets WebStudio, the rules.xml file is automatically created or updated accordingly.
For more information on configuring rules.xml, see [OpenL Tablets Developer’s Guide],
Rules Project Descriptor section.

The following topics are included in this section:

• Multi Module Project

• Creating a Project

• Project Sources

Multi Module Project

Projects with several rule modules are called multi module projects. All modules inside one project have mutual
access to each other's tables. It means that a rule or table of a module of a project is accessible and can be
referenced and used from any rule of any module of the same project.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 135 of 157

When there are many modules, OpenL Tablets engine may start processing modules from any of them. That is
why it is important to specify the root file and compilation order of modules in a project. For this purpose,
module dependencies are used.

To run a rule table from another project, connect projects by dependencies as described in Project and Module
Dependencies.

Creating a Project

The simplest way to create an OpenL Tablets project is to create a project from template in the installed OpenL
Tablets WebStudio.

A new project is created containing simple template files that users can apply as the basis for a custom rule
solution.

Project Sources

Project sources can be added from developer created artifacts, such as jars, Java classes, and Groovy scripts,
which contain a reference to the folder with additional compiled classes to be imported by the module. For that,
a rules project must contain the rules.xml file created in the project root folder.

Saved classpath is automatically added to the rules.xml file. After that, classpath can be used in rules.
Classpath can indicate both specific jar and folder with libraries. The asterisk * symbol can be used for the
varying part in the classpath.

Figure 192: Classpath description in the rules.xml

To use a classpath in dependent projects, place a common classpath inside the main dependency project and
then reuse it in all dependent projects.

Note: All sources defined for the project are loaded by the same source loader classloader. In other words, Java classes or
Groovy scripts from one source can be used by classes or Groovy script from another source. Datatype classes or any
other classes generated by rules are not visible in source loader classloader. In other words, any classes generated by
rules are not visible in Java classes or Groovy script loaded by source loader classloader but can be loaded via Java
reflection via the current thread classloader.

5.2 Rules Runtime Context Management from Rules
The following additional internal methods for modification, retrieving, and restoring runtime context support
work with runtime context from OpenL Tablets rules:

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 136 of 157

Internal methods for work with runtime context

Method Description

getContext() Returns a copy of the current runtime context.

Figure 193: Using the getContext function in a method

emptyContext() Returns new empty runtime context.

setContext(IRulesRuntimeContext
context)

Replaces the current runtime context with the specified one.

modifyContext(String propertyName,
Object propertyValue)

Modifies the current context by one property: adds a new one or replaces by
specified if property with such a name already exists in the current context.

Figure 194: Using modifyContext in a rules table

Note: All properties from the current context remain available after modification,
so it is only one property update.

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 137 of 157

Internal methods for work with runtime context

Method Description

restoreContext() Discharges the last changes in runtime context. The context is rolled back to the
state before the last setContext or modifyContext.

Figure 195: Using restoreContext in a method table

ATTENTION: All changes and rollbacks must be controlled manually: all changes applied to runtime context will remain
after rule execution. Make sure that the changed context is restored after the rule is executed to prevent unexpected
behavior of rules caused by unrestored context.

Note: The org.openl.rules.context package must be imported as illustrated in the following figure so that a user can
work with runtime context from rules:

5.3 Project and Module Dependencies
Dependencies provide more flexibility and convenience. They may divide rules into different modules and
structure them in a project or add other related projects to the current one. For example, if a user has several
projects with different modules, all user projects share the same domain model or use similar helpers rules, and
to avoid rules duplication, put the common rules and data to a separate module and add this module as
dependency for all required modules.

Dependencies glossary

Term Description

Dependency module Module that is used as a dependency.

Dependency project Project that is used as a dependency.

Root module Module that has dependency declaration, explicit via environment or implicit via project
dependency, to replace with another module.

Root project Project that has dependency declaration to replace with another project.

The following topics are included in this section:

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 138 of 157

• Dependencies Description

• Dependencies Configuration

• Import Configuration

• Components Behavior

Dependencies Description

The module dependency feature allows making a hierarchy of modules when rules of one module depend on
rules of another module. As mentioned before, all modules of one project have mutual access to each other's
tables. Therefore, module dependencies are intended to order them in the project if it is required for
compilation purposes. Module dependencies are commonly established among modules of the same project. An
exception is as follows.

The following diagram illustrates a project in which the content of Module_1 and Module_2 depends on the
content of Module_3, where thin black arrows are module dependencies:

Project

Module_1

Module_3

Module_2

Figure 196: Example of a project with modules hierarchy

In addition, project dependency enables accessing modules of other projects from the current one:

Project1

Module1_1

Module1_n

Module1_2

All Modules

Project2

Module2_1

Module2_m

Module2_2

Figure 197: Example of a project dependency with all modules

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 139 of 157

The previous diagram displays that any module of Project1 can execute any table of any module of Project2:
thick gray arrow with the All Modules label is a project dependency with all dependency project modules
included. This is equivalent to the following schema when each module of Project1 has implicit dependency
declaration to each module of Project2:

Project1

Module1_1

Module1_n

Module1_2

Project2

Module2_1

Module2_m

Module2_2

Figure 198: Interpretation of a project dependency (with all modules)

The project dependency with the All Modules setting switched on provides access to any module of a
dependency project from the current root project.

Users may combine module and project dependencies if only a particular module of another project must be
used. An example is as follows:

Project1

Module1_1

Module1_n

Module1_2

Project2

Module2_1

Module2_m

Module2_2

Figure 199: Example of a project and module dependencies combined

In the example, for defined external Project2, only the content of Module2_2 is accessible from Project1: thick
gray arrow without label is a project dependency which defines other projects where dependency module can
be located.

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 140 of 157

If the project dependency does not have the All Modules setting enabled, dependencies are determined on the
module level, and such project dependencies serve the isolation purpose thus enabling getting a dependency
module from particular external projects.

After adding a dependency, all its rules, data fields, and data types are accessible from the root module. The
root module can call dependency rules.

Dependencies Configuration

This section describes dependencies configuration.

1. To add a dependency to a module, add the instruction to a configuration table as described in Configuration
Table using the dependency command and the name of the module to be added.

A module can contain any number of dependencies. Dependency modules can also have dependencies.
Avoid using cyclic dependencies.

Figure 200: Example of configuring module dependencies

2. To configure a project dependency, in a rules project descriptor, in the rules.xml file created in the project
root folder, in the Dependency section, for the name tag used for defining the dependency project name,
set the autoIncluded tag to true or false.

Figure 201: Example of configuring project dependencies – fragment of rules.xml

For more information on configuring rules.xml, see [OpenL Tablets Developer’s Guide], Rules Project
Descriptor section.

By a business user, project dependencies are easily set and updated in OpenL Tablets WebStudio as described in
[OpenL Tablets WebStudio User Guide], Defining Project Dependencies section.

A project can contain any number of dependencies. Dependency projects may also have dependencies. Avoid
cyclic dependencies. Module names of the root and dependency projects must be unique.

When OpenL Tablets is processing a module, if there is any dependency declaration, it is loaded and compiled
before the root module. When all required dependencies are successfully compiled, OpenL Tablets compiles the
root module with awareness about rules and data from dependencies.

Import Configuration

Using import instructions allows adding external rules and data types from developer created artifacts, such as jars,
Java classes, and Groovy scripts, located outside the Excel based rule tables. In the import instruction, list all Java
packages, Java classes, and libraries that must become accessible in the module.

http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf
http://openl-tablets.org/files/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 141 of 157

Import configuration is defined using the Environment table as described in Configuration Table. Configuration
can be made for any user mode, single-user mode or multi-user mode. For proper import configuration,
classpath must be registered in project sources as described in Project Sources.

In the following example, the Environment table contains an import section with reference to the corresponding
Java package:

Figure 202: Example of configuring module import

Note: For importing packages or classes, the same syntax is used. Firstly, OpenL Tablets tries to import the specified class.
If it is not found, the system identifies it as a package and imports all classes from the specified package.

To import the library to the module, the following syntax is used:

org.packagename.ClassName.*

It adds all static methods from the corresponding class. A user can call these methods inside OpenL rules directly
without indicating the class name. An example is using rotate(str, shift) instead of
StringUtils.rotate(str, shift).

Common Java imports can be placed only into the main, or dependency, project or module. When working with
a dependent project, there is no need to specify Import in this project. Import data is retrieved directly from the
dependency project. Dependency instruction makes all import instructions applied to the dependent module.

Components Behavior

All OpenL Tablets components can be divided into three types:

• Rules in rule tables as described in Decision Table, Spreadsheet Table, Method Table, TBasic Table.

• Data in data tables as described in Data table.

• Data types in data type tables as described in Datatype Table.

The following table describes behavior of different OpenL Tablets components in dependency infrastructure:

OpenL Tablets components behavior in dependency infrastructure

Operations or components Rules Datatypes Data

Can access components in
a root module from
dependency.

Yes. Yes. Yes.

OpenL Tablets Reference Guide Working with Projects

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 142 of 157

OpenL Tablets components behavior in dependency infrastructure

Operations or components Rules Datatypes Data

Both root and dependency
modules contain a similar
component.

1. Rules with the same signature and
without dimension properties: duplicate
exception.

2. Methods with the same signature and
with a number of dimension properties:
they are wrapped by Method
Dispatcher. At runtime, a method that
matches the runtime context properties
is executed.

3. Methods with the same signature and
with property active: only one table can
be set to true. Appropriate validation
checks this case at compilation time.

Duplicate exception. Duplicate
exception.

None of root and
dependency modules
contain the component.

There is no such method exception during
compilation.

There is no such data
type exception
during compilation.

There is no such
field exception
during compilation.

OpenL Tablets Reference Guide Appendix A: BEX Language Overview

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 143 of 157

Appendix A: BEX Language Overview
This chapter provides a general overview of the BEX language that can be used in OpenL Tablets expressions.

The following topics are included in this chapter:

• Introduction to BEX

• Keywords

• Simplifying Expressions

• Operators Used in OpenL Tablets

Introduction to BEX
BEX language provides a flexible combination of grammar and semantics by extending the existing Java grammar
and semantics presented in the org.openl.j configuration using new grammar and semantic concepts. It
enables users to write expressions similar to natural human language.

BEX does not require any special mapping; the existing Java business object model automatically becomes the
basis for open business vocabulary used by BEX. For example, the policy.effectiveDate Java expression is
equivalent to the Effective Date of the Policy BEX expression.

If the Java model correctly reflects business vocabulary, no further action is required. Otherwise, custom type-
safe mapping or renaming can be applied.

Keywords
The following table represents BEX keyword equivalents to Java expressions:

BEX keywords equivalent to Java expressions

Java expression BEX equivalents

== • equals to

• same as

!= • does not equal to

• different from

a.b b of the a

< is less than

> is more than

<= • is less or equal

• is in

!> is no more than

>= is more or equal

!< is no less than

Because of these keywords, name clashes with business vocabulary can occur. The easiest way to avoid clashes
is to use upper case notation when referring to model attributes because BEX grammar is case sensitive and all
keywords are in lower case.

OpenL Tablets Reference Guide Appendix A: BEX Language Overview

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 144 of 157

For example, assume there is an attribute called isLessThanCoverageLimit. If it is referred to as is less than
coverage limit, a name clash with keywords is less than occurs. The workaround is to refer to the attribute as Is
Less Than Coverage Limit.

Simplifying Expressions
Unfortunately, the more complex an expression is, the less comprehensible the natural language expression
becomes in BEX. For this purpose, BEX provides the following methods for simplifying expressions:

• Notation of Explanatory Variables

• Uniqueness of Scope

Notation of Explanatory Variables

BEX supports a notation where an expression is written using simple variables followed by the attributes they
represent. For example, assume that the following expression is used in Java:

(Agreed Value of the vehicle - Market Value of the vehicle) / Market Value of the vehicle is

more than Limit Defined By User

The expression is hard to read. However, it becomes much simpler if written according to the notion of
explanatory variables as follows:

(A - M) / M > X, where

 A - Agreed Value of the vehicle,

 M - Market Value of the vehicle,

 X - Limit Defined By User

This syntax resembles the one used in scientific publications and is much easier to read for complex expressions.
It provides a good mix of mathematical clarity and business readability.

Uniqueness of Scope

BEX provides another way for simplifying expressions using the concept of unique scope. For example, if there is
only one policy in the scope of expression, a user can write effective date instead of effective date of the policy.
BEX automatically determines uniqueness of the attribute and either produces a correct path or emits an error
message in case of ambiguous statement. The level of the resolution can be modified programmatically and by
default equals 1.

Operators Used in OpenL Tablets
The full list of OpenL Tablets operators in order of priority is as follows:

Assignment and compound assignment operators

Operator Description

= Simple assignment operator. C = A + B will assign value of A + B into C. Chaining the
assignment operator is possible to assign a single value to multiple variables: C = A = B.

+= Add and assignment operator. It adds right operand to the left operand and assigns the result
to left operand. C += A is equivalent to C = C + A.

-= Subtract and assignment operator. It subtracts the right operand from the left operand and
assigns the result to left operand. C -= A is equivalent to C = C – A.

OpenL Tablets Reference Guide Appendix A: BEX Language Overview

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 145 of 157

Assignment and compound assignment operators

Operator Description

*= Multiply and assignment operator. It multiplies the right operand with the left operand and
assigns the result to left operand. C *= A is equivalent to C = C * A.

/= Divide and assignment operator. It divides the left operand with the right operand and assigns
the result to left operand. C /= A is equivalent to C = C / A.

%= Deprecated. Use mod(x, y) math function instead.

Remainder and assignment operator. It divides and takes the remainder using two operands
and assigns the result to left operand. C %= A is equivalent to C = C % A.

Conditional operator

? :

condition ?

valueIfTrue :

valueIfFalse

Conditional, or ternary, operator that takes three operands and is used as shortcut for if-then-
else statement.

If condition is true, the operator returns the value of the valueIfTrue expression;
otherwise, it returns the value of valueIfFalse.

Boolean OR

|| or "or" Logical OR operator. If any of the two operands are true, the condition becomes true.

Boolean AND

&& or "and" Logical AND operator. If both the operands are true, the condition becomes true.

Equality

== Equality operator checks if the values of two operands are equal.

!= or <> Inequality operator checks if the values of two operands are equal. If values are not equal, the
condition becomes true.

==== Strict equality operator checks if the values of two operands are equal without considering
inaccuracy of float point values. If values are equal strictly, the condition becomes true.

!=== Strict inequality operator checks if the values of two operands are equal regardless of
inaccuracy of float point values. If values are not equal strictly, the condition becomes true.

string== String equality operator checks whether values of two operands are equal. First, letter parts
are compared, and if they are equal, numeric parts are compared, as if these are numbers, and
not text.

string<> or string!= String inequality operator checks if the values of two operands are equal. If the values are not
equal, the condition becomes true. First, letter parts are compared, and if they are equal,
numeric parts are compared, as if these are numbers, and not text.

Relational

< Less than operator checks if the value of the left operand is less than the value of the right
operand.

> Greater than operator checks if the value of the left operand is greater than the value of right
operand.

<= Less than or equal to operator checks if the value of left operand is less than or equal to the
value of right operand.

>= Greater than or equal to operator checks if the value of the left operand is greater than or
equal to the value of right operand.

<== Strict less than operator checks if the value of the left operand is less than the value of right
operand without considering inaccuracy of float point values.

OpenL Tablets Reference Guide Appendix A: BEX Language Overview

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 146 of 157

Assignment and compound assignment operators

Operator Description

>== Strict greater than operator checks if the value of the left operand is greater than the value of
right operand without considering inaccuracy of float point values.

<=== Strict less than or equal to operator checks if the value of the left operand is less than or equal
to the value of right operand without considering inaccuracy of float point values.

>=== Strict greater than or equal to operator checks if the value of the left operand is greater than
or equal to the value of right operand without considering inaccuracy of float point values.

string< String less than operator checks if the value of the left operand is less than the value of the
right operand. First, letter parts are compared, and if they are equal, numeric parts are
compared, as if these are numbers, and not text.

string> String greater than operator checks if the value of the left operand is greater than the value of
right operand. First, letter parts are compared, and if they are equal, numeric parts are
compared, as if these are numbers, and not text.

string<= String less than or equal to operator checks if the value of left operand is less than or equal to
the value of right operand. First, letter parts are compared, and if they are equal, numeric
parts are compared, as if these are numbers, and not text.

string>= String greater than or equal to operator checks if the value of the left operand is greater than
or equal to the value of right operand. First, letter parts are compared, and if they are equal,
numeric parts are compared, as if these are numbers, and not text.

Additive

+ Addition operator adds values on either side of the operator.

- Subtraction operator subtracts right-hand operand from left-hand operand.

Multiplicative

* Multiplication operator multiplies values on either side of the operator.

/ Division operator divides left-hand operand by right-hand operand.

% Deprecated. Use mod(x, y) math function instead.

Remainder operator divides left-hand operand by right-hand operand and returns remainder.

Power

** Deprecated. Use pow(x, y) math function instead.

Exponentiation operator returns the result of raising left-hand operand to the power right-
hand operand.

Unary

+ Unary plus operator precedes its operand and indicates positive value.

- Unary negation operator precedes its operand and negates it.

++ Deprecated. Use x = x + 1 expression instead.

Increment operator increments its operand (increases the value of operand by 1) and returns
a value.
If used postfix, with operator after operand (for example, x++), then it returns the value before
incrementing. For instance, x = 3; y = x++; gives y = 3, x = 4;

If used prefix with operator before operand (for example, ++x), then it returns the value after
incrementing. For instance, x = 3; y = ++x; gives y = 4, x = 4.

OpenL Tablets Reference Guide Appendix A: BEX Language Overview

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 147 of 157

Assignment and compound assignment operators

Operator Description

-- Deprecated. Use x = x – 1 expression instead.

Decrement operator decrements its operand (decreases the value of operand by 1) and
returns a value.
If used postfix, with operator after operand (for example, x--), then it returns the value before
decrementing. For instance, x = 3; y = x--; gives y = 3, x = 2;

If used prefix with operator before operand (for example, ++x), then it returns the value after
decrementing. For instance, x = 3; y = --x; gives y = 2, x = 2.

! or not Logical NOT operator reverses the logical state of its operand. If a condition is true, then
Logical NOT operator will make it false.

(Datatype) x Cast operator converts the operand value x to the specified Datatype type.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 148 of 157

Appendix B: Functions Used in OpenL Tablets
This chapter provides a complete list of functions available in OpenL Tablets and includes the following sections:

• Math Functions

• Array Functions

• Date Functions

• String Functions

• Special Functions

Math Functions
Math functions

Function Description

abs(double a) Returns the absolute value of a number.

acos(double a) Returns the arc cosine of a value. The returned angle is in the range 0.0 through pi.

asin(double a) Returns the arc sine of a value. The returned angle is in the range -pi/2 through pi/2.

atan(double a) Returns the arc tangent of a value; the returned angle is in the range -pi/2 through
pi/2.

atan2(double y, double x) Returns the angle theta from the conversion of rectangular coordinates (x, y) to
polar coordinates (r, theta).

cbrt(double a) Returns the cube root of a double value.

ceil(double a) Returns the smallest (closest to negative infinity) double value that is greater than
or equal to the argument and is equal to a mathematical integer.

copySign(double magnitude,
double sign) / (float magnitude,
float sign)

Returns the first floating-point argument with the sign of the second floating-point
argument.

cos(double a) Returns the trigonometric cosine of an angle.

cosh(double x) Returns the hyperbolic cosine of a double value.

exp(double a) Returns Euler's number e raised to the power of a double value.

expm1(double x) Returns ex -1.

floor(double a) Returns the largest (closest to positive infinity) double value that is less than or
equal to the argument and is equal to a mathematical integer.

format(double d) Formats double value.

format(double d, String fmt) Formats double value according to Format fmt.

getExponent(double a) Returns the unbiased exponent used in the representation of a.

getExponent(double x, double y) Returns sqrt(x2 +y2) without intermediate overflow or underflow.

IEEEremainder(double f1, double
f2)

Computes the remainder operation on two arguments as prescribed by the IEEE 754
standard.

isInfinite(number) Determines whether an input value is infinitely large in magnitude.

isNaN(number) Determines whether an input value is a non-numeric value.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 149 of 157

Math functions

Function Description

log(double a) Returns the natural logarithm (base e) of a double value.

log10(double a) Returns the base 10 logarithm of a double value.

log1p(double x) Returns the natural logarithm of the sum of the argument and 1.

mod(double number, double
divisor)

Returns the remainder after a number is divided by a divisor.

nextAfter(double start, double
direction) / (float start, float
direction)

Returns the floating-point number adjacent to the first argument in the direction of
the second argument.

pow(double a, double b) Returns the value of the first argument raised to the power of the second argument.

quotient(double number, double
divisor)

Returns the quotient from division number by divisor.

random() Returns a double value with a positive sign, greater than or equal to 0.0 and less
than 1.0.

rint(double a) Returns the double value that is closest in value to the argument and is equal to a
mathematical integer.

round(double value) Returns the closest value to the argument, with ties rounding up.

round(double value, int scale, int
roundingMethod)

Returns a number which scale is the specified value, and which unscaled value is
determined by multiplying or dividing this number’s unscaled value by the
appropriate power of ten to maintain its overall value.

roundStrict(double value) Returns the closest value to the argument without adding ulp.

scalb(double a, int scaleFactor) Return a × 2scaleFactor rounded as if performed by a single correctly rounded
floating-point multiply to a member of the double value set.

signum(double d) / (float f) Returns the signum function of the argument; zero if the argument is zero, 1.0 if the
argument is greater than zero, -1.0 if the argument is less than zero.

sin(double a) Returns the trigonometric sine of an angle.

sinh(double x) Returns the hyperbolic sine of a double value.

sqrt(double a) Returns the correctly rounded positive square root of a double value.

tan(double a) Returns the trigonometric tangent of an angle.

tanh(double x) Returns the hyperbolic tangent of a double value.

toDegrees(double angrad) Converts an angle measured in radians to an approximately equivalent angle
measured in degrees.

toRadians(double angdeg) Converts an angle measured in degrees to an approximately equivalent angle
measured in radians.

ulp(double value) Returns the size of an ulp of the argument.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 150 of 157

Array Functions
Array functions

Function Description

add(array,element) Copies the given array and adds the given element at the end of the new array.

add(array,index, element) Inserts the specified element at the specified position in the array.

addAll(array1, array2) Adds all elements of the given arrays into a new array.

addIgnoreNull(array, element) Copies the given array and adds the given element at the end of the new array.

addIgnoreNull(array, int index,
element)

Inserts the specified element at the specified position in the array.

allFalse(Boolean[]) Returns true if all array elements are false.

anyFalse(Boolean[]) Returns true if any array element is false.

allTrue(Boolean[]) Returns true if all array elements are true.

anyTrue(Boolean[]) Returns true if any array element is true.

avg(array) Returns the arithmetic average of the array of number elements.

big(array, int position) Removes null values from array, sorts an array in descending order and returns the
value at position 'position'.

concatenate(array) Joins several values in one text string.

contains(array, elem) Checks if the value is in the given array. Instead of an array, this function can accept
a range or an array of ranges.

indexOf(array[], elem) Finds the index of the given value in the array.

intersection(String[] array1,
String[] array2)

Returns a new array containing elements common to the two arrays.

isEmpty(array) Checks if an array is empty or null.

flatten(arrayN) Returns a flatten array with values from arrayN.

Returns a single dimension array of elements. Converts a matrix into a list.

length(array) Returns the number of elements in the array. It is more preferable than the
array.length syntax.

max(array) Returns the maximal value in the array of numbers.

median(array) Returns the middle number in a group of supplied numbers. For example,
=MEDIAN(1,2,3,4,5) returns 3. The result is a floating value.

min(array) Returns the minimal value in the array of numbers.

noNulls(array) Checks if the array is non-empty and has only non-empty elements.

product(array values) Multiplies the numbers from the provided array and returns the product as a
number.

remove(array, int index) Removes the element at the specified position from the specified array.

removeElement(array, element) Removes the first occurrence of the specified element from the specified array.

removeNulls(T[] array) Returns a new array without null elements.

slice(array, int
startIndexInclusive, int
endIndexExclusive)

Returns a part of the array from startIndexInclusive to endIndexExclusive.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 151 of 157

Array functions

Function Description

small(array, int position) Removes null values from array, sorts an array in ascending order and returns the
value at position 'position'.

sort(array) Sorts the specified array of values into ascending order, according to the natural
ordering of its elements.

sum(array) Returns the sum of numbers in the array.

Date Functions
Date functions

Function Description

absMonth(Date dt) Returns the number of months since AD.

absQuarter(Date dt) Returns the number of quarters since AD as an integer value.

amPm(Date dt) Returns Am or Pm value for an input Date as a String.

Date(int year, int month, int date) Creates a date using input numbers for year, month, and date, for example,
Date(2018, 7, 12) -> 12 July 2018 (00:00:00.000).

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 152 of 157

Date functions

Function Description

dateDif(startDate, endDate, unit) Calculates the difference between dates in days, months, and years.

This function accepts the following values:

Value Description

D Calculates difference in full days.

For example, for
dateDif(toDate("2/1/2011"),toDate("5/1/2012"),"D"), the
result is 455 days.

M Calculates difference in full month.

Note that for
dateDif(toDate("08/31/2016"),toDate("09/30/2016"),"M"), the
result is 0 because dateDif is rounded down by default.

Note: If your business case requires that difference is 1, use an
alternative formula is (Year(date1)-
Year(date2))*12+Month(date1)-Month(date2).

Y Calculates difference in full years.

For example,
dateDif(toDate("03/04/2020"),toDate("05/01/2027"),"Y"),
the result is 7.

W Calculates difference in full weeks.

MD Calculates difference in full days excluding months and years.

For example, for
dateDif(toDate("2/14/2011"),toDate("5/14/2012"),"MD"),
the result is 0 as 14 is compared to 14.

YD Calculates difference in full days excluding years.

YM Calculates difference in full months excluding years.

MF Calculates difference in month. A fractional result can be
returned if the last month is not completed.

For example, for
dateDif(toDate("03/04/2020"),toDate("05/01/2027"),"MF"),
the result is 85.9.

YF Calculates difference in years. A fractional result can be
returned if the last year is not completed.

WF Calculates difference in weeks. A fractional result can be
returned if the last week is not completed.

YMF Calculates difference in month excluding years. A fractional
result can be returned if the last month is not completed.

dateToString(Date dt) Converts a date to the String. Deprecated, use toString(Date dt) function
instead.

dateToString(Date dt, String
dateFormat)

Converts a date to the String according dateFormat. Deprecated, use toDate
(String str, String dateFormat) function instead.

dayDiff(Date dt1, Date dt2) Returns the difference in days between endDate and startDate.

dayOfMonth(Date dt) Returns the day of month.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 153 of 157

Date functions

Function Description

dayOfWeek(Date dt) Returns the day of week.

dayOfYear(Date dt) Returns the day of year.

firstDateOfQuarter(int absQuarter) Returns the first date of quarter.

hour(Date dt) Returns the hour.

hourOfDay(Date dt) Returns the hour of day.

lastDateOfQuarter(int absQuarter) Returns the last date of the quarter.

astDayOfMonth(Date dt) Returns the last date of the month.

minute(Date dt) Returns the minute.

month(Date dt) Returns the month (1 to 12) of an input date.

monthDiff(Date dt1, Date dt2) Return the difference in months before d1 and d2.

quarter(Date dt) Returns the quarter (0 to 3) of an input date.

second(Date dt) Returns the second (0-59) of an input date.

toDate(String str) Converts a string to a date. Date in str should be represented as text in the
supported by OpenL format, see Representing Date Values, for example
toDate("7/12/80") -> 12 July 1980 (00:00:00.000).

toDate(String str, String dateFormat) Converts a string into the date of the specified format. For date formats
description, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Sim
pleDateFormat.html.

toString(Date dt) Converts a date to the string in MM/dd/yyyy format.

toString(Date dt, String dateFormat) Converts a date to the string of the specified format. For date formats
description, see
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/Sim
pleDateFormat.html.

weekDiff(Date dt1, Date dt2) Returns the difference in weeks between endDate and startDate.

weekOfMonth(Date dt) Returns the week of the month within which that date is.

weekOfYear(Date dt) Returns the week of the year on which that date falls.

yearDiff(Date dt1, Date dt2) Returns the difference in years between endDate and startDate.

year(Date dt) Returns the year for an input date. For example, for the 2/1/2011 input, the
function returns 2011.

String Functions
String functions

Function Description Comment

concatenate(str1, str2,…) Joins several values in one text string.

contains(String str,
char searchChar)

Checks if String contains a search character, handling null.

../../../../../AppData/Roaming/AppData/Local/Microsoft/Windows/Users/epoyasok/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Users/vlunkova/AppData/Local/temp/RulesUtils/org/openl/rules/helpers/RulesUtils.html#firstDateOfQuarter%28int%29
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 154 of 157

String functions

Function Description Comment

contains(String str,
String searchStr)

Checks if String contains a search String, handling null.

containsAny(String str,
char[] chars)

Checks if the String contains any character in the given set of
characters.

containsAny(String str,
String searchChars)

Checks if the String contains any character in the given set of
characters.

endsWith(String str, String suffix) Check if a String ends with a specified suffix.

isEmpty(String str) Checks if a String is empty ("") or null.

isNotEmpty() Verifies if a Strung is non-empty.

isNumeric(String str) Verifies whether a string contains numbers. This function is
deprecated.

length(String str) Returns the number of characters in a string.

like(String str, String pattern) Used to check whether a string value matches the predefined
pattern, such as emails, phone numbers, and zip codes. For
more information, see Pattern-Matching Function.

lowerCase(String str) Converts a String to lower case.

removeEnd(String str, String
remove)

Removes a substring only if it is at the end of a source string,
otherwise returns the source string.

removeStart(String str, String
remove)

Removes a substring only if it is at the beginning of a source
string, otherwise returns the source string.

replace(String str, String
searchString, String replacement)

Replaces all occurrences of a String within another String.

replace(String str, String
searchString, String replacement,
int max)

Replaces a String with another String inside a larger String, for
the first max values of the search String.

startsWith(String str, String
prefix)

Check if a String starts with a specified prefix.

substring(String str, int
beginIndex)

Gets a substring from the specified String. A negative start
position can be
used to start n
characters from
the end of the
String.

substring(String str, int
beginIndex, int endIndex)

Gets a substring from the specified String. A negative start
position can be
used to start or
end n characters
from the end of
the String.

textJoin (String separator,
Object[])

Combines non-empty values from multiple ranges and strings
and includes a separator between each two values combined
into single text. Objects can be of any type, such as string,
double, integer, and custom type.

OpenL Tablets Reference Guide Appendix B: Functions Used in OpenL Tablets

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 155 of 157

String functions

Function Description Comment

textSplit (String separator, String
text)

Splits the input text into a non-empty valued array of strings
using the separator.

toBoolean(a) Converts a string to Boolean.

toDouble(String) Converts a string of numeric characters to the Double. The dot
“.” symbol must be used as a decimal separator.

toInteger(String) Converts a string of numeric characters to the Integer value.

trim(String str) Removes whitespace characters from both ends of a string.

upperCase(String str) Converts a string to upper case.

Special Functions
Special functions

Function Description Comment

copy(object) Copies an object for independent modification from the
original object. This functionality is implemented to
support variations from rules.

error(String “msg”) Displays the error message.

 fieldname(object) Returns a value from the specified field of the object age(driver) is the
same as driver.age;
age(drivers) returns
the ages list of all
drivers.

getValues(MyVocabularyDatatyp
e)

Returns array of values from the MyVocabularyDatatype
vocabulary data type.

Returns
MyVocabularyDatatype[]
.

instanceOf(Object,
className.class)

Returns Boolean value defining if the Object is of the
specified class. This function is deprecated.

new Datatype(value of
attribute1, value or attribute2)

Used to create an instance of the datatype. Values must
be comma-separated and listed in the same order in
which the appropriate fields are defined in the datatype.
If no values are provided, an empty instance is created.

new Person("John",

"Smith", 24)

new Datatype[] {} Used to create a data array.

The number in the square brackets [] denotes the size of
the array, for example, new String[10]. If no number
is provided, an empty array is created, for example, new
String[].

Values in the braces {} define the values of the
appropriate array elements.

new

Integer[]{1,8,12}

toString(value) Converts value to the string.

OpenL Tablets Reference Guide Index

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 156 of 157

Index

A

aggregated object

definition, 55

specifying data, 55

array

definition, 113

elements, 113

index operators, 114

working from rules, 113

B

BEX language, 143

explanatory variables, 144

introduction, 143

keywords, 143

simplifying expressions, 144

unique scope, 144

Boolean values

representing, 41

C

calculations

using in table cells, 41

column match table

definition, 78

configuration table

definition, 63

D

data integrity, 57

data table

advanced, 52

definition, 51

simple, 52

data type table

definition, 47

data types, 120

date values

representing, 41

decision table

definition, 13

interpretation, 17, 18

structure, 14

transposed, 38

E

examples, 9, 11

F

functions in rules, 123

G

guide

audience, 5

related information, 5

typographic conventions, 5

M

method table

definition, 62

O

OpenL Tablets

advantages, 7

basic concepts, 7

creating a project, 134

definition, 7

introduction, 7

project, 8

rules, 8

tables, 8

OpenL Tablets, 12

OpenL Tablets project

definition, 8

P

project

creating, 134, 135

definition, 8

modifying contents, 63

structure, 134

properties table

definition, 65

OpenL Tablets Reference Guide Index

© 2004-2022 OpenL Tablets
OpenL Tablets 5.25 Page 157 of 157

R

rule

definition, 8

run table

definition, 62

structure, 62

S

spreadsheet table

definition, 66

system overview, 8

T

table cells

using calculations, 41

Table Part functionality, 82

TBasic table

definition, 78

test table

definition, 59

structure, 59

tutorials, 9

	1 Preface
	1.1 Audience
	1.2 Related Information
	1.3 Typographic Conventions

	2 Introducing OpenL Tablets
	2.1 What Is OpenL Tablets?
	2.2 Basic Concepts
	Rules
	Tables
	Projects

	2.3 System Overview
	2.4 Installing OpenL Tablets
	2.5 Tutorials and Examples
	Tutorials
	Examples

	3 Creating Tables for OpenL Tablets
	3.1 Table Recognition Algorithm
	3.2 Table Types
	Decision Table
	Decision Table Structure
	Decision Table Interpretation
	Simple and Smart Rules Tables
	Simple Rules Table
	Smart Rules Table
	Multiple Return Columns in Smart Rules Tables
	Result of Custom Data Type in Smart and Simple Rules Tables

	Simple and Smart Lookup Tables
	Understanding Lookup Tables
	Lookup Tables Implementation Details
	Simple Lookup Table
	Smart Lookup Table

	External Tables Usage in Smart Decision Tables
	Ranges and Arrays in Smart and Simple Decision Tables
	Rules Tables
	Collecting Results in Decision Table
	Local Parameters in Decision Table
	Simplified Declarations
	Performance Tips

	Transposed Decision Tables
	Representing Values of Different Types
	Representing Arrays
	Representing Date Values
	Representing Boolean Values
	Representing Range Types

	Using Calculations in Table Cells
	Referencing Attributes
	Calling a Table from Another Table
	Using Referents from Return Column Cells
	Using Rule Names and Rule Numbers in the Return Column

	Datatype Table
	Introducing Datatype Tables
	Inheritance in Data Types
	Vocabulary Data Types

	Data Table
	Using Simple Data Tables
	Using Advanced Data Tables
	Specifying Data in Data Tables with List and Map Fields
	Specifying Data for Aggregated Objects
	Ensuring Data Integrity

	Test Table
	Understanding Test Tables
	Context Variables Available in Test Tables
	Creating a Test Table for a Spreadsheet or Decision Table with SpreadsheetResult as Input Parameter

	Run Table
	Method Table
	Configuration Table
	Configuration Table Description
	Defining Dependencies between Modules in the Configuration Table

	Properties Table
	Spreadsheet Table
	Parsing a Spreadsheet Table
	Accessing Spreadsheet Result Cells
	Using Ranges in Spreadsheet Table
	Auto Type Discovery Usage
	Custom Spreadsheet Result
	Spreadsheet Result Output Customization
	Testing Spreadsheet Result

	TBasic Table
	Column Match Table
	MATCH Algorithm
	SCORE Algorithm
	WEIGHTED Algorithm

	Constants Table
	Table Part

	3.3 Table Properties
	Category and Module Level Properties
	Default Value
	System Properties
	Properties for a Particular Table Type
	Rule Versioning
	Business Dimension Properties
	Introducing Business Dimension Properties
	Using Effective and Expiration Date
	Using a Request Date
	Using an Origin Property
	Overlapping of Properties Values for Versioned Rule Tables
	Rules Runtime Context
	Runtime Context Properties in Datatype Tables

	Active Table

	Info Properties
	Dev Properties
	Dev Properties List
	Variation Related Properties
	Using the Precision Property in Testing

	Properties Defined in the File Name
	Properties Defined in the Folder Name
	Keywords Usage in a File Name

	4 OpenL Tablets Functions and Supported Data Types
	4.1 Working with Arrays
	Working with Arrays from Rules
	Array Index Operators
	SELECT Operators
	ORDER BY Operators
	SPLIT BY Operator
	TRANSFORM TO Operators
	Array Index Operators and Arrays of the SpreadsheetResult Type
	Advanced Usage of Array Index Operators

	Operators and Functions to Work with Arrays
	Length Function
	Comparison Operators

	Rules Applied to Array
	Rules with Variable Length Arguments

	4.2 Working with Data Types
	Simple Data Types
	Range Data Types

	4.3 Working with Functions
	Understanding OpenL Tablets Function Syntax
	Math Functions
	Math Functions Used in OpenL Tablets
	Round Function
	round(number)
	round(number,int)
	round(number,int,int)

	Date Functions
	Special Functions and Operators
	Error Function
	Ternary Operator
	Performing Operations via Formula
	Pattern-Matching Function

	Null Elements Usage in Calculations

	5 Working with Projects
	5.1 Project Structure
	Multi Module Project
	Creating a Project
	Project Sources

	5.2 Rules Runtime Context Management from Rules
	5.3 Project and Module Dependencies
	Dependencies Description
	Dependencies Configuration
	Import Configuration
	Components Behavior

	Appendix A: BEX Language Overview
	Introduction to BEX
	Keywords
	Simplifying Expressions
	Notation of Explanatory Variables
	Uniqueness of Scope

	Operators Used in OpenL Tablets

	Appendix B: Functions Used in OpenL Tablets
	Math Functions
	Array Functions
	Date Functions
	String Functions
	Special Functions

	Index

